1 / 42

Beam-Stack Search: Integrating Backtracking with Beam Search

Beam-Stack Search: Integrating Backtracking with Beam Search. Ring Zhou and Eric A. Hansen Presented by Paul Gross. Beam-Stack Search Overview. Complete, anytime algorithm O( dw ) Memory Complexity d = depth of optimal solution, w = beam width Uses novel beam stack structure

lona
Download Presentation

Beam-Stack Search: Integrating Backtracking with Beam Search

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Beam-Stack Search:Integrating Backtracking with Beam Search Ring Zhou and Eric A. Hansen Presented by Paul Gross

  2. Beam-Stack Search Overview • Complete, anytime algorithm • O(dw) Memory Complexity • d = depth of optimal solution, w = beam width • Uses novel beam stack structure • Stores most promising, unexpanded nodes at each level • Bounds, admissibly prunes sub-optimal nodes • Outperforms • Breadth-first Branch and Bound (BFBnB) • Divide and Conquer Solution Reconstruction implementation • Depth-first Iterative Deepening A* (DFIDA*) • Iterative-Deepening A* heuristic implementation

  3. Beam Search Algorithm • Breadth-first approach • Bound level fringe size • Size is beam width (w) • Branches most w promising nodes at each level • Width bound reduces complexity • Time, Memory: O(wd) • Incomplete due to inadmissible pruning rule w = 2 ... Goal State

  4. Making Beam Search Complete • Beam-Stack search • Builds off Breadth-first Beam Search • Prune layers by beam width • Each layer expands at most w nodes • Expand layers by f(n) bounds • f(n) = g(n) + h(n) as in A*, where h(n) admissible • Beam Stack stores f(n) ranges for each layer • Successor layer nodes have f(n) value in range • Backtracking pruned nodes by shifting f(n) ranges • Provides completeness

  5. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 2 6 D E F G H I J 1 1 0 2 0 2 2 3

  6. Beam-stack Search Algorithm g(n) =V h(n) = V S

  7. Beam-stack Search Algorithm g(n) =V h(n) = V S

  8. Beam-stack Search Algorithm g(n) =V h(n) = V S

  9. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 f(A) = g(A) + h(A) = 2 + 1 = 3 1 A

  10. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 f(A) = g(A) + h(A) = 2 + 1 = 3 1 A

  11. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 2 1 A 2 B

  12. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 2 1 A 2 B

  13. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C

  14. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C layerSize(1) = 3 > w • f(A), f(B) < f(C), prune C • Adjust beam stack to backtrack to C

  15. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C layerSize(1) = 3 > w • f(A), f(B) < f(C), prune C • Adjust beam stack to backtrack to C

  16. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C

  17. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 D 0

  18. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 D E 1 0

  19. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 layerSize(2) = 3 > w D E F 1 1 0

  20. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 D E F 1 1 0

  21. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 D E F 1 1 0

  22. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 D E F G 1 1 0 2

  23. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 D E F G f(G) < f(E) 1 1 0 2

  24. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 D E F G 1 1 0 2

  25. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 D E F G H 1 1 0 2 2

  26. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 D E F G H 1 1 0 2 2

  27. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 D E F G H 1 1 0 2 2

  28. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 D E F G H 1 1 0 2 2 3

  29. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 D E F G H 1 1 0 2 2 3

  30. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 D E F G H 1 1 0 2 2 3

  31. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 D E F G H 1 1 0 2 2 3

  32. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 4 5 6 2 4 D E F G H 1 1 0 2 2 3

  33. Beam-stack Search Algorithm g(n) =V h(n) = V S

  34. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C

  35. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C

  36. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 2 I 0

  37. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 2 6 I J 0 2

  38. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 2 6 I J 0 2

  39. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 2 6 I J 0 2

  40. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 2 6 I J 0 2

  41. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 2 6 I J 0 2

  42. Beam-stack Search Algorithm g(n) =V h(n) = V S 2 3 2 1 A 2 B 2 C 2 6 I J 0 2 • 5 is the optimal solution

More Related