220 likes | 393 Views
Team 5 Aerodynamics PDR #2. Scott Bird Mike Downes Kelby Haase Grant Hile Cyrus Sigari Sarah Umberger Jen Watson. Preview. Airfoil Sections and Geometry Aerodynamic mathematical model Launch Conditions Endurance. Walk-Around. Data Boom. Conformal Pod. Engine. Landing Gear.
E N D
Team 5 Aerodynamics PDR #2 • Scott Bird • Mike Downes • Kelby Haase • Grant Hile • Cyrus Sigari • Sarah Umberger • Jen Watson PDR
Preview • Airfoil Sections and Geometry • Aerodynamic mathematical model • Launch Conditions • Endurance PDR
Walk-Around Data Boom Conformal Pod Engine Landing Gear PDR
Aircraft 3-view PDR
Wing Geometry • Wing • Airfoil NACA 2412 • Aspect Ratio 7 • Span 14 (ft) • Chord 2 (ft) • Planform Area 28 (ft^2) • Taper Ratio 0 (deg) • Dihedral 0 (deg) • Sweep Angle 0 (deg) PDR
Horizontal Tail Geometry • Horizontal Tail • Airfoil NACA 0012 • Aspect Ratio 5 • Span 7 (ft) • Chord (average) 1.38 (ft) • Planform Area 9.64 (ft^2) • Taper Ratio 0.8 • Sweep Angle 5 (deg) PDR
Vertical Tail Geometry • Vertical Tail • Airfoil NACA 0012 • Aspect Ratio 2 • Span 2.8 (ft) • Chord (average) 1.38 (ft) • Planform Area 3.9 (ft^2) • Taper Ratio 0.73 • Sweep Angle 10 (deg) PDR
Lift Methodology • Used XFOIL to get NACA 2412 2-D data • Converted 2-D data to 3-D data for wing CLo and CLα • Used XFOIL to get NACA 0012 horizontal tail data • Used method described in Roskam Part VI, CH8 for CLδe PDR
Aerodynamic Mathematical Model of Lift • CL= CLo + CLα* α + CLδe *δe • CLα = Cl α/ (1 + (Cl α/ (π* e * A))) [rad-1] • CL = Cl * (CLα/Cl α) • CLδe = CLα_ht* ηht * Sht / Sref * τe [rad-1] • ηht = f (Sht_slip, Sht, Pavailable, U, Dp, qbar) • (Roskam Part VI, CH8) PDR
Summation of individual components for CDo Wing, fuselage, horizontal tail, vertical tail CD=CDo + k * CL * CL CDo = Σ CDo(i) CDo(i) = (Cf * FF * Q * Swet) / Sref k = 1 / (pi * AR * e) Aerodynamic Mathematical Model of Drag PDR
Moment Methodology • Used method described in Roskam, Chapter 3 of AAE 421 Book to find individual components of moment equation PDR
Aerodynamic Mathematical Model of Moments • CM = CMo + CMα* α + CMδe *δe • (α and δe in degrees) • Cm0 = Cmac_wf + CL0_wf*(xbar_cg - xbar_acwf) + CLalpha_h*eta_h*(S_h/S)*(xbar_ach - xbar_cg)*epsilon • Cmalpha = (x/cw)*CLalpha_wf*(xbar_cg - xbar_acwf) - CLalpha_h*eta_h*(S_h/S)*(xbar_ach - xbar_cg)*(1 – depsilon/dalpha) • CMdele = -CLalpha_h*eta_h*Vbar_h*tau_e PDR
Aerodynamic Mathematical Model Summary • CL= 0.1764 + 7.941 (rad-1)* α + 1.925 (rad-1)* δe • α and δe are in radians • CD = .036 + .0522 * (.1764 + 7.941 (rad-1) * α)2 • Cm= - 0.0280 - 0.1562* α- 0.0898*δe PDR
Launch Conditions Known Values • W = 49.6 lbs • S = 28 ft2 • ρ = 0.0023328 slug/ft3(at 600 ft) • CLmax-To = 0.8*CLmax = 1.44 • VTO = 1.2*[2*W/(S*ρ*CLmax-To)]1/2 VTO = 39 ft/s PDR
Launch from EOM integration • tTO = 3.7 s • STO = 76 ft PDR
Endurance Known Values • Bhp = 3.7 hp • ηp = 0.40 • Cbhp = 0.0022 lb/s-hp • Wi = 49.6 lbf • Wf = 43.6 lbf • L/D = (86.6% of L/Dmax when flying @ Vmin power) PDR
Endurance • V = [2*W/( ρ*S)*(K/(3*CDo))1/2] ½ • (Raymer, eq 17.33) • E = (L/D)*[(550*ηp)/(Cbhp*V)]*ln(Wi/Wf) • (Raymer eq 17.31) E = 75.5 minutes PDR
Future Work • Resize flaps for landing • Verify known values • Cbhp • Weight reduction from extra fuel (Endurance) PDR
Review of Today’s Presentation • Wing Geometry and Size • 3-view of aircraft • Aerodynamic mathematical model • Launch Conditions • Endurance PDR
Questions Questions?? PDR
References Roskam AAE 421 Book Raymer Aircraft Design: A Conceptual Approach AAE 251 Book Introduction to Aeronautics: A Design Perspective PDR