480 likes | 661 Views
醫學論文常見撰寫錯誤. 大林慈濟醫院耳鼻喉科 李清池. 摘要. 研究設計需注意事項 : 了解研究設計 事前準備工作 了解 sample 組成 選擇適當之測量工具 常見之統計錯誤 : 常見的統計錯誤 統計方法陳述不完整 常見錯誤結果呈現方式 常態分布 vs. 非常態分布 錯誤的 P 值寫法 錯誤解釋結果. 學習目標. 了解研究設計 認識常見的統計錯誤 了解正確之統計方式、進而避免錯誤使用. 大綱. 第一章 研究設計需注意事項 第二章 常見之統計錯誤 第三章 表達方式錯誤 第四章 課程總結.
E N D
醫學論文常見撰寫錯誤 大林慈濟醫院耳鼻喉科 李清池
摘要 • 研究設計需注意事項: 了解研究設計 事前準備工作 了解sample組成 選擇適當之測量工具 • 常見之統計錯誤: 常見的統計錯誤 統計方法陳述不完整 • 常見錯誤結果呈現方式 常態分布 vs.非常態分布 錯誤的P值寫法 錯誤解釋結果
學習目標 • 了解研究設計 • 認識常見的統計錯誤 • 了解正確之統計方式、進而避免錯誤使用
大綱 • 第一章 研究設計需注意事項 • 第二章 常見之統計錯誤 • 第三章 表達方式錯誤 • 第四章 課程總結
第一章 研究設計需注意事項 • 1.1單元學習目標 • 1.2 了解研究設計 • 1.3 事前準備工作 • 1.4 了解sample組成 • 1.5 選擇適當之測量工具 • 1.6 單元小結
1.1 單元教學目標 • 認識研究設計 • 認識研究需準備之事前工作
1.2 了解研究設計 • RCT (randomized controlled study): experimental or interventional study • Controlled comparative study • Observational study: Case-control study Cohort study Survey
1.3 研究前準備工作(1) • 了解研究的dependent variables: primary outcome, secondary outcomes • 了解研究的independent variables: x1, x2,.. • 可能之risk factors, confounding factors • 適合的統計方式 • 不要等研究做完才來用統計方式找關聯性
研究前準備工作(2) • 於申請計畫經費時,應先估算達到 power=0.8時所需之sample size. • 而估算公式可用pilot study或之前相關研究利用公式或套裝軟體計算 (free software: power and sample size calculation). • 清楚了解 type I error及 type II error定義
網路上下載免費軟體 • http://www.cher.ubc.ca/PDFs/Sample_size.pdf講義 • SAS power and sample calculation:使用sas syntax輕鬆計算 • 使用NCSS, PASS software
關於收案病例數目應於方法 (material and methods)中 描述清楚 • 若有個案退出可用flow chart幫助讀者釐清人數變化 • 若是採用RCT (randomized controlled study)應徹底執行 randomization 及 blinding 步驟
清楚了解sample之組成 • 常見在非RCT之研究中,比較兩組之變相有無差異時,應謹慎以對 • 若是個案數過少,p value>0.05並不表示兩組間無差異! • Selection bias always should be considered! • 若個案數適當,可考慮使用propensity score處理selection bias問題
測量工具之選擇 • 避免自製問卷 • 研究工具應採有信度 (reliability)及效度 (validity)驗證過之問卷或測量方式 • 如量測癌症生活品質問卷,可用中文化之SF-36、中文化之EORTC QLQ-C30或HN35
1.6單元小結 • 了解研究設計是進行研究前必備知識 • 進行研究前應先估計收案數目 • 可採用flow chart幫助讀者釐清病例數目變化過程 • 選擇適當之測量工具(有信度及效度之工具)
第二章常見之統計錯誤 • 2.1 單元學習目標 • 2.2 常見的統計錯誤 • 2.3 統計方法陳述不完整 • 2.4單元小結
2.1單元教學目標 • 了解常見之統計錯誤 • 避免統計錯誤
2.2常見的統計錯誤 • 在進行統計分析之前,應對資料庫之分布有基本之認識,才能選擇正確之分析方式 • 但卻發現研究者常忽略採用統計分析之基本假設,因而誤用統計方法 • 在撰寫論文中誤用統計方法,可能遭致退稿或不正確解讀結果 • 認識正確之統計方式,避免錯誤
使用不正確之統計方式 • Two-sample t test vs paired-t test • Parametric method vs non-parametric test • Pearson’s chi-square test vs Fisher’s exact test • Continuous variable vs Categorical or Ordinal variable
誤用linear regression • Y=β0+β1X1+ε • Linear regression被廣泛的使用,卻也常常被誤用: 如資料不是常態分佈 Xi間未完全獨立 (如重複測量) Y和X間不是線性關係 (如Y= β1X2+ ε)
Type I error 問題 • 進行研究時,若有多組比較時,應事前即定義好組別 • 不應為了產生統計意義而重新分組 • 分組應符合常理,不然應於方法中詳細敘述 • 若結果為連續變項,多組比較時,應採ANOVA 及 post-hoc (Bonferonni or Tukey, etc.),不可兩兩相比,產生過多之type I error.
Example: • 若有10組學生比較身高,要用何種檢定呢? One-way ANOVA及post-hoc • 若兩兩檢定會有什麼問題嗎? type I error 可能會達到 45x0.05 • 解決方法: Bonferroni Multiple comparisons procedure, 此時達統計意義之標準為 0.05/45=0.0011
Example • 若有甲乙兩班各5人比較體重高低,要用何種檢定? • Wilcoxon Rank-Sum test or Mann-Whitney U test 因為個案數過少,採用無母數方法
使用Chi-square test常見錯誤 • 應先建立要檢測之虛無假說(null hypothesis) ,再選定檢定變項。 • 若列聯表中有期望值<5時,應改用Fisher’s exact test 評估結果 • 若組別過多,可考慮併組
2.3 統計方法陳述不完整 • 雙尾或單尾檢定 • Two sample t-test vs. paired t test • 少用之統計方式未詳細說明 • 若同一Table中有數種變項檢定應陳述清楚
2.4單元小結 • 於類別變項統計時,若expected value<5要改用Fisher’s exact test • 於連續變項多組比較應採用ANOV及事後比較 (post-hoc) • 若同一Table中有數種變項檢定應陳述清楚
第三章 常見錯誤結果呈現方式 • 3.1 單元學習目標 • 3.2 常態分布 vs.非常態分布 • 3.3 錯誤的P值寫法 • 3.4 錯誤解釋結果 • 3.5 單元小結
3.1單元教學目標 • 認識結果呈現方式 • 了解standard deviation 和 standard error 之使用時機 • 避免錯誤之P值表達方式
3.2 常態分布 vs.非常態分布 • Parametric : • Mean±SD • Paired-t test • Two-sample t test • ANOVA • Nonparametric: • Median; range • Wilcoxon Signed-Rank test • Wilcoxon Rank-Sum test • Kruskal-Wallis test
常態分布 • Mean • Standard deviation (SD): 描述資料之分佈 所有樣本中,有95%樣本會在mean±1.96 SD內 • Standard error (SE): 使用sample mean來估計population之平均值,95% confidence interval = mean±1.96 SE
3.3 錯誤的P值寫法 • Example: Hazard ratio=5, P=ns; HR=3, P<0.05; HR=4, P>0.05 • 以上皆是錯誤之書寫方式,除非P<0.001 • 應清楚載明P值,如 HR=0.656, P=0.007
除 P value外,加入95% CI • The effect of drug on lowering DBP was statistically significant (P<0.05) report the real P value, such as P=0.02 • The effect of drug in treatment group on lowering DBP dropped from 110 to 92 mmHg (P=0.02) • The drug lowered DBP by a mean of 18 mmHg (95% CI=2-34 mmHg, P=0.02)
3.4 錯誤解釋結果 • P值未達統計意義為”non significant” • 不等於”no effect” 或 “no difference” • 當研究統計結果為non significant時,應計算統計之power,一般當power=0.8以上才可說兩組間無明顯差別! • Power=1-β (type II error) Pr (rejecting H0 when H1 is true)
於結果呈現及討論時,需討論potential bias及confounding factors • 探討bias之方向 • 若結果可能被低估下仍達統計學顯注意義,責實際情況上更有意義 • 若結果可能被高估,則於結果之判讀應更保守及小心
如左圖p=0.388; 應解讀為兩者差距未無統計學之意義,而不應過度解讀為兩者無差別 • 若能提供power更好
Clinical importance vs. statistical significance • 當sample size大時,統計結果常達統計之顯著意義,但若effect size過小,反而於臨床上沒有實際效用! • 當sample size小時,統計結果未達統計之顯著意義,但若臨床上影響很大,也應趕快發表,告知其他研究員!
3.5單元小結 • 描述資料分佈: Standard deviation • 推估95% confidence interval: mean±1.96SE • 確切描述p value至小數點後3位 • 若p value 未達統計學顯著意義應小心保守描述
第四章 課程總結 • 4.1 課程總結 • 4.2 參考資料
4.1課程總結 • 進行研究前,對研究設計有詳細知了解,清楚知道是case-control study, or cohort study or RCT. • 應先計算達到 power=0.8所需個案數 • 選擇適當之統計分析方式: paired t test vs. two-sample t test; ANOVA vs. Kruskal-Wallis test • 使用列聯表計算,當expected value <5時要採用 Fisher’s exact test. • 於統計方式清楚描述本研究是採雙尾或單尾檢定 • 描述資料分佈使用 standard deviation • 推估95% confidence interval: mean±1.96 SE • 未達統計學意義不代表無差別! Absence of proof is not proof of absence.
4.2參考資料 • Alexander MS, Qamruz Z, Karl PF et al. Statistical errors in medical research-a review of common pitfalls. Swiss Med Wkly 2007; 137: 44-49. • Tom L. Twenty statistical errors even you can find in biomedical research articles. Croat Med J 2004; 45: 361-370. • 劉仁沛. 公共衛生論文常見之統計問題.台灣衛誌 2003; 22:356-361.