1 / 108

IES-5000 Geir A. Rimala

IES-5000 Geir A. Rimala. Agenda . Teknisk om VDSL2/ xDSL VDSL2 Port Setup VDSL2 ADSL2+ Fallback SHDSL Bonding SHDSL EFM Port setup QoS Mulitcast ACL. VDSL1 vs. VDSL2. VDSL Band Plan. VDSL Band Plan. PSD ( dBm /Hz ). POTS. DS1. US1. DS2. US2. 138kHz. Frequency (MHz).

lonna
Download Presentation

IES-5000 Geir A. Rimala

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IES-5000 Geir A. Rimala

  2. Agenda • Tekniskom VDSL2/xDSL • VDSL2 Port Setup • VDSL2 ADSL2+ Fallback • SHDSL Bonding • SHDSL EFM Port setup • QoS • Mulitcast • ACL

  3. VDSL1 vs. VDSL2

  4. VDSL Band Plan VDSL Band Plan PSD (dBm/Hz) POTS DS1 US1 DS2 US2 138kHz Frequency (MHz) 3.75MHz 5.2MHz 8.5MHz 12MHz

  5. VDSL2 Band Plan VDSL2 Band Plan PSD (dBm/Hz) DS1 US1 DS2 US2 DS3 138kHz US3 30MHz POTS Frequency (MHz) 3.75MHz 5.2MHz 8.5MHz 12MHz 18MHz

  6. VDSL2 Profile

  7. VDSL2 Band Plan VDSL2 Band Plan Table (998) • Plan 998 approved for ANSI T1 (for North America, Japan and Europe) • • Plan 997, 998 approved for ETSI (for Europe) • • US0 for Annex B: 120 – 276 kHz, DS1 for Annex B: 276 kHz -

  8. PSD (dBm/Hz) Frequency (MHz) Basics of the DMT Technology QAM-Modulated subchannel (tone) individually optimized as a function of impairments Unused tone • Each band divided into hundreds of 4kHz sub-bands • • Each sub-band carries a narrow QAM signal • • ADSL compatible tone spacing (4.3125kHz) • • Bandwidth optimization and frequency division duplexing occur by zeroing many sub-bands

  9. Basics of the DMT Technology • DMT (Discrete Multi-tone) Ideal bits/tone Typical Loop Gain Actual bits/tone Ideal bits/tone Typical Loop Gain Actual bits/tone

  10. PSD & PSD Mask • Power Spectral Density • Defines the distribution of Power on a VDSL line • PSD Mask is a Template that specifies the max. allowable PSD for a Line • The unit of PSD is dBm/Hz

  11. Limit PSD Mask • Reduce the impact of interference and attenuation • Specified by ITU-T 993.2 • MIB PSD Mask allows administrator to Tune the Limit PSD Mask

  12. Configuration - Limit PSD Mask

  13. Optional Band • Optional Band controlled by Limit PSD Mask. • Optional Band is used for upstream transmission • Negotiated during line Initiation

  14. Annex A US0 Mask

  15. VDSL UPBO/DPBO

  16. Upstream Power Back-off PSD PSD PSD f f f PSD f PSD f • Full-power upstream transmissions on short loops result in high-level far-end crosstalk (FEXT) noise on long (far) loops. • Upstream bit rates on long loops can be dramatically reduced.

  17. Upstream Power Back-off (Cont.) PSD PSD PSD f f f PSD f PSD f • Upstream transmitters must reduce their PSDs so the levels of FEXT they inject to shorter loops are lower. • The process of reducing the upstream PSD is known generically as up stream power back-off (UPBO)

  18. Upstream Power Back-off (Cont.) • Varying telephone wiring lengths cause cross talk • Enable UBPO to adjust the Transmit PSD based on reference line length

  19. Upstream Power Back-off (Cont.) • General Conclusions • Non-FEXT dominated environment: • Do not apply UPBO! • It only causes SNR reduction in short loops with no SNR • improvement in long loops. • FEXT-dominated environment: • Apply UPBO for all loops shorter than the longest one! • Anappropriate UPBO value can always be found that avoids any SNR reduction and even improves the SNR in either long or short loops (because of lower FEXT coupling in short loops).

  20. Downstream Power Back-off • VDSL signal may interfere with other service on the same bundle of Lines • DPBO can reduce performance degradation bychanging PSD Level

  21. xDSL Error Correction (QoS)

  22. ErrorCorrection (QoS) • Interleave and Reed-Solomon (FEC) • BitErrorRate 10-7, 0dB SNR • Max 1 bitfeil per 10 millioner bits • 20Mbps = ? • NoiseMargin • 6dB SNR = BER 10-24 • Reallife≤ BER 10-9 • Reed-Solomon • Sender redundant data • Single bit errorcorrection • Interleaving • Økt latency • Kun maks, ingen minimum • Beskyttelsen er avhengig av linkspeed

  23. ErrorCorrection (QoS) • INP (Impulse Noise Protection) • Bit rate = Number_of_tones_per_symbol * Bits_per_tone * Symbolrate • ADSL example: 512*15*4000 = 30,7 Mbps is the theoretically maximum bitrate for up/downstream combined • 1 Symbol = All tones • 4000 Symbols per second • 1 Symbol = 250 µs (30a = 125 µs)

  24. ErrorCorrection (QoS) • Inp • Gir minimumsbeskyttelse

  25. ErrorCorrection (QoS) • INP • Med D0

  26. ErrorCorrection (QoS) INP 2 (symbols) og 8 ms Interleave = 500µs beskyttelse Får du mer enn 500µs ImpulseNoise så kan du miste 8ms med data

  27. ErrorCorrection (QoS) • Interleaving • Økt latency • Kun maks, ingen minimum • Beskyttelsen er avhengig av link-speed • INP • Gir minimumsbeskyttelse • Opererer uavhengig av link-speed • Broadcom: ”…field data demonstrating that at least 5 ms [INP] are required.” • BitErrorRate 10-7, 0dB SNR • Max 1 bitfeil per 10 millioner bits • 5 Mbps = ? • NoiseMargin • 6dB SNR = BER 10-24 • Reallife≤ BER 10-9 • Reed-Solomon • Sender redundant data • Single bit errorcorrection

  28. ErrorCorrection (QoS) • PhyR (Fire) • Broadcompropritær terminologi (G.INP)

  29. ErrorCorrection (QoS) • PhyR (G.INP) • Selv om det blir bedt om en retransmit så sendes den korrupte dataen videre innover så RS kan forsøke å reparere pakka • Kun overhead ved feil (+ RS), ingen Interleaving • Høyere INP uten ”penalties” (linkspeed/latency) • BER 10-10 på 0 dB SNR • Enkel provisjonering • Ingen vedlikehold • Håndteres av DSL-chippen, ikke noe på høyere layer

  30. PhyR (G.INP)

  31. PhyR (G.INP) The INP value starts from 17.0 (DMT Symbol) when PhyR is enabled.

  32. VDSL Port setup (-> 31.10.10)

  33. VDSL2 port setup Profile 12b, No US0, B8-9 mask, UPBO

  34. VDSL Port setup (01.11.10 ->)

  35. VDSL2 port setup

  36. VDSL2 Band Plan VDSL2 Band Plan Table (998) • Plan 998 approved for ANSI T1 (for North America, Japan and Europe) • • Plan 997, 998 approved for ETSI (for Europe) • • US0 for Annex B: 120 – 276 kHz, DS1 for Annex B: 276 kHz -

  37. VDSL2 port setup

  38. VDSL2 port setup Profile 17a, US0 (120 kHz – 276 kHz), UPBO, Mask: B8-2, B8-3, B8-6, B8-10, B8-12, B8-15

  39. 10.0.0.x/24 Lab – VDSL2 link ihht Telenor OA (US0/NUS0) 10.0.0.1/255.255.255.0 VDSL2 CPE

  40. VDSL2 port setup Profile 17a, US0 (120 kHz – 276 kHz), UPBO, Mask: B8-2 (ingen US0, DS1 ihhtTelenor), B8-3 (DS1 starter på tone 36), B8-6 (Ingen US0, DS1 ihhtTelenor), B8-10 (Ingen US0, DS1 ihhtTelenor), B8-12(Ingen US0, DS1 ihhtTelenor), B8-15 (Ingen US0, DS1 ihhtTelenor)

  41. SHDSL EFM

  42. SHDSL EFM

  43. SHDSL EFM bonding • SLC1348G-22 • EFM • 64PAM / 128PAM kommer • SLC1348G-22 = SLC1248G-22 • EFM bonding begrensninger • Kan kun EFM bonde på samme chip (1-4, 5-8, 9-12, etc) • CPE • P794 • EFM Bonding • 64PAM / 128PAM • Samme chip som i SLC1348G-22

  44. QoS Queuing methods

  45. Queue Method Overview • Queuing is used to help solve performance degradation in network congestion. • Currently, it supports three scheduling methods: • SPQ • WRR

  46. Priority to Queue Assignment IES-5000/-6000 has 8 hardware queues.

  47. Strict Priority Queuing (SPQ) • High Priority Queuesendsfirst(Default) • Low Priority Queue packets will not be sent until the High Priority Queue is empty High priority first out High Priority Queue Low Priority Queue Switch t

  48. Weighted Round Robin (WRR) • Each queue has its weighted value • The queue selection schedule is round-robin • The policy is based on packet High priority is sent out first with weight 3 W=3 High Priority Queue Middle Priority Queue W=2 Low Priority Queue W=1 Switch t

  49. Weighted Round Robin (WRR) 3 X 100M = 50M B = 1 + 2 + 3 • Bandwidth for the Highest Priority Queue if each packet has the same packet size:

  50. Special Scenario of WRR • Special Scenario • If the low priority queue has large packet sizes W=3 High Priority Queue Middle Priority Queue W=2 Low Priority Queue W=1 Switch t The low priority queue has the "Highest Bandwidth"

More Related