1 / 28

EMU/ eROSITA Complementarity for Galaxy Cluster Science (Cosmology)

EMU/ eROSITA Complementarity for Galaxy Cluster Science (Cosmology). Thomas Reiprich Argelander Institute for Astronomy Bonn University http://dark-energy.net. 2013. 2012. eROSITA Team. PI: Peter Predehl (MPE) Project Scientist: Andrea Merloni

lorand
Download Presentation

EMU/ eROSITA Complementarity for Galaxy Cluster Science (Cosmology)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EMU/eROSITA Complementarity for Galaxy Cluster Science (Cosmology) Thomas Reiprich Argelander Institute for Astronomy Bonn University http://dark-energy.net 2013 2012

  2. eROSITA Team PI: Peter Predehl (MPE) Project Scientist: Andrea Merloni Co-Is: Hans Böhringer, Ulrich Briel, Hermann Brunner, Evgeniy Churazov, Michael Freyberg, Peter Friedrich, Günther Hasinger, Eckhard Kendziorra, Dieter Lutz, Josef Mohr, Norbert Meidinger, Kirpal Nandra, Mikhail Pavlinsky, Thomas Reiprich, Andrea Santangelo, Jürgen Schmitt, Axel Schwope, Matthias Steinmetz, Lothar Strüder, Rashid Sunyaev, Jörn Wilms System Engineer: Josef Eder Product Assurance: H. Bräuninger, M. Hengmith Electronics Engineering: W. Bornemann, O. Hälker, S. Hermann, W. Kink, S. Müller, O. Hans, Z. Zhang, G. Plasoianu + Workshop Mechanical Engineering: H. Huber, Chr. Rohé, L. Tiedemann, R. Schreib, B. Mican, H. Eibl, A. Schneider, F. Huber, K. Lehmann, + Workshop Mirror System, PANTER: P. Friedrich, W. Burkert, M. Freyberg, B. Budau, , V. Burwitz Cooling, Thermal Engineering: M. Fürmetz, E. Pfeffermann, A. Buron CCD-Camera: N. Meidinger, G. Schächner, J. Elbs, S. Ebermayer, A. v. Kienlin Attitude: A. Schwope Calibration, Analysis: G. Hartner, K. Dennerl, R. Andritschke, Chr. Tenzer Laboratory, PUMA, Tests: M. Vongehr, R. Gaida, K. Dittrich, Th. Burghart, T. Blasi, F. Schrey, K. Hartmann Ground Software, Simulation, Science: H. Brunner, P. Guglielmetti, G. Lamer, M. Mühlegger, J. Wilms, I. Kreykenbohm, C. Schmid, M. Brusa, A. Finoguenov, M. Salvato Mission Planning: J. Schmitt, J. Robrade Scientific/Infrastructure Working Group Chairs: W. Becker, H. Böhringer, H. Brunner, K. Dennerl, M. Freyberg, F. Haberl, I. Kreykenbohm, J. Mohr, K. Nandra, T. Reiprich, J. Robrade, A. Santangelo, M. Sasaki, J. Schmitt, A. Schwope, J. Wilms Institutes: MPE, Garching/D Universität Erlangen-Nürnberg/D Universät Tübingen/D Universität Hamburg/D Astrophysikalisches Institut Potsdam/D Max-Planck-Institut für Astrophysik/D Argelander-Institut für Astronomie, Universität Bonn/D Universitätssternwarte München/D Space Research Institute IKI, Moscow/Ru Industry: Media Lario/I Mirrors, Mandrels Kayser-Threde/D Mirror Structures Carl Zeiss/D ABRIXAS-Mandrels Invent/D Telescope Structure pnSensor/D CCDs EHP/B Heatpipes RUAG/A Mechanisms HPS/D,P MLI + many small companies

  3. eROSITA Instrument Russian satellite Focallength1,6 m Field of View 1° Ø 7 identicalMirror Modules 54 nestedMirror Shells Energy Range 0.5-10 keV Energy Resolution 138 eV @ 6 keV Dimensions 3,2m × 1,9m Ø Weight 740 kg Adapted from P. Predehl

  4. eROSITA Status TelescopeStructure readyforintegrationofsubsystemsandcomponents Mirror Modules FM-productionrunning FM1 (31 shells) in spec. FM2 (15 shells) in spec. 15 arcsec HEW, on-axis Provided by P. Predehl

  5. pnCCD-Camera pnCCD Module workingsince 2010, in spec size: 384 × 384 pixels = 28.8 × 28.8 mm2 cycle time: 50msec energyresolution 138eV @ 6 keV Data hyper-cube Provided by P. Predehl

  6. Simulations Pointing Scan Off-axisblurringof a Wolter-I telescope PSF hastobeaveragedovertheFoV (1°) 15 arcsec on-axis 28 arcsecaveraged Provided by P. Predehl

  7. ABRIXAS1999 Spectrum-XGJet-X, SODART, etc. Bundle of 7 small telescopes To extend the all-sky surveytowards higher energies ROSITA2002 ABRIXAS science on the International Space Station Historical Development ROSAT 1990-1998 First X-ray all-sky surveywith an imaging telescope Negotiations between Roskosmos and ESA on a "new" Spectrum-XG mission (2005) MoU between Roskosmos and DLR (2007) Spektr-RG Launch: 2013 eROSITA DUO 2004 Dark Energy 105 Clusters of Galaxies Provided by P. Predehl

  8. Mr. Putin getsinformed aboutDark Energy... eROSITA Provided by P. Predehl

  9. ROSAT: 1 all-sky survey eROSITA: 8 all-sky surveys From G. Hasinger.

  10. Comparisonwithother Surveys HIFLUGCS Provided by P. Predehl Norris et al. (2011)

  11. Expected eROSITA Exposure Map Russia??? Germany??? Galactic coordinates seconds Provided by J. Robrade

  12. EMU Sky Coverage Norris et al. (2011)

  13. HIFLUGCS Galactic coordinates seconds Provided by J. Robrade

  14. RASS ¼ keV Map Data from S. Snowden. eROSITA: more sensitive, better PSF, larger energy band.

  15. NH Distribution LAB survey, from P. Kalberla.

  16. Main Science Driver for eROSITA: Cosmological Constraints from ~100,000 Galaxy Clusters(First “Stage IV” Dark Energy Experiment World-Wide, Albrecht et al. 2006)

  17. Limiting Luminosity and Mass Pillepich, Porciani, Reiprich, to be subm.

  18. Pillepich, Porciani, Reiprich, to be s.

  19. Pillepich, Porciani, Reiprich, to be subm. ~93,000 clusters

  20. Possible Role of EMU • EMU will likely detect 10s of thousands of clusters (Melanie’s talk, Norris et al. 2011). Combination with X-ray data (from eROSITA) will allow us to study cluster physics in detail and with great statistics. But how can EMU be useful for eROSITA cluster cosmology?

  21. Dependence of Total Number of Detected Clusters on LX−M Relation ~50% more clusters Patrick Lieberz, Bachelor Thesis (2011)

  22. LX−M Relations Vikhlinin et al. (2009) z = 0.5 Mantz et al. (2010) Higher LX for given M LX M Patrick Lieberz

  23. Dependence of LX−T Relation on Presence of Central Radio Soure (CRS) and on Dynamical State CRS slope = 3.2 NCRS slope = 2.5 SCC (proxy for relaxed) slope = 3.3 NCC (proxy for merger) slope = 2.4 Mittal et al. (2011), based on complete HIFLUGCS sample.

  24. Possible Role of EMU • Classifying into CRS and NCRS clusters could be useful for a better differentiation of applicable scaling relations, resulting in more robust cosmological constraints. EMU will be able to detect CRS for many eROSITA clusters. • Same applies for relaxed and disturbed clusters. Radio halos, typical radio relics, and NATs/WATs reside almost exclusively in disturbed clusters, and EMU will find ‘em.

  25. Cassano (2011) Norris et al. (2011) ~EMU-Wide, C. Ferrari van Weeren et al. (2010)

  26. Follow-upObservations Bottleneck for Some Studies • Needs forfollow-up: • Enablingstudies of cosmology and clusterphysics: • Redshift: phot-z + spec-z; massestimation: weaklensing + velocitydisersions • Evolution of AGN population (~3 million will be detected)Redshift: (phot-z +) spec-z • Galacticsources • Follow-upcontextforeROSITA (List notcomplete!) • Shallow Multiband OIR Surveys 2MASS, PanSTARRS, SDSS • Deep Multiband OIR Surveys VISTA, DES • Optical SpectroscopicSurveys SDSS, BOSS • Proposed Optical Spec.Surveys 4MOST, BigBOSS, SPIDERS, WEAVE, Euclid • Future OIR ImagingSurveys LSST, Euclid • Radio surveys • ASKAP/EMU, WODAN, LOFAR • Sub-/mm • Planck, SPT, ACT Adapted from P. Predehl

  27. From A. Pillepich

More Related