1 / 36

AST 309 part 2: Extraterrestrial Life

AST 309 part 2: Extraterrestrial Life. Terrestrial Planet (and Life) Finder. The Drake Equation:. N = N * f pl n hab f L f C f T L/T. Stars? Planets? Habitable Origin Complex Intelligence, Lifetime

loren
Download Presentation

AST 309 part 2: Extraterrestrial Life

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AST 309part 2:Extraterrestrial Life Terrestrial Planet (and Life) Finder

  2. The Drake Equation: N = N* fplnhab fL fC fT L/T Stars? Planets? Habitable Origin Complex Intelligence, Lifetime planets? of life? life? technology? of civilization

  3. Now estimate number of planets with life in our Galaxy (not number with intelligent, communicating life) If we leave out fi and fc (i.e. assume they are unity—all life forms develop our kind of intelligence and technology and try to communicate), we are calculating the number of life-bearing planets in our Galaxy at any given time (like now). We know there has been life on our planet for 3 billion years, so take L = 3 billion. Let’s be optimistic about fP (0.1), nP (1), and fL= (0.1). Then Nlife ~ 1011 x 0.1 x 1 x 0.1 x (3 billion/10 billion) = 300 million 300 million planets with life in our Galaxy! That’s roughly1 out of 1000 stars. This means that the nearest life-bearing planet might only be 10-100 light years away, close enough that in the future we may be able to detect such planets and obtain their spectra (that is the primary goal of astrobiology space missions for the next decade). This result is a major reason for exerting most of our effort toward detecting signatures of biochemistry in the spectra of planets orbiting nearby stars.

  4. Overview: Terrestrial Planet Finder (TPF) Mission goals: Target: Nearby stars (why?) Sun-like stars (why)? Detect: 1. Habitable Planets 2. Life using Biosignatures

  5. 1 AU = 1 arcsec separation at 1 parsec There are no stars within 1 parsec (3.26 light years) Earth : ~10–10 separation = 0.1 arcseconds for a star at 10 parsecs

  6. Overview: Kepler looks at stars >1000 light years away (too see as many as possible) These are too far away for TPF!

  7. The Solar Neighborhood:

  8. The Solar Neighborhood:

  9. TPF Targets: There are ~100 stars within 22 light years Step 1: find the Earth-like planets: • Radial velocity? • Astrometry? • Direct Imaging?

  10. Probing the HZ of our closest star, Proxima Centauri (M5V):

  11. d = 1.34 parsecs = 4.37 lyr = 227,600 A.U. ~ 40 × 1012 km Introducing the Neighbors: α Cen A [G2 V]V=0.01 Teff = 5790 K M = 1.10 M α Cen B [K1 V]V=1.33 Teff = 5260 K M = 0.93 M Binary: P = 79.91 yrs a = 23 AU e = 0.52 i = 79° Angular separation: 2 – 22 arcsec (2009: 7.5”)

  12. The challenge of detecting Earth-mass planets α Cen B α Cen A Significance of signal depending on N (total number of measurements): • classic signal detection problem: • S << σ, N ~ 104 – 105 • Systematic errors under control! Mostly “white” noise • (= random, in time uncorrelated errors) • Greg Laughlin’s proposal to observe α Cen with N~105 • Remaining systematic noise sources are stellar origin (pulsation, star spots, magnetic cycle)

  13. Radial velocity detection of Earth-like planets Alpha Centauri campaign at the McLellan 1 m telescope at Mt. John Observatory (NZ) with Stuart Barnes & John Hearnshaw

  14. Radial velocity detection of Earth-like planets

  15. Strategies to detect Earth-like planets around nearby stars Doppler detection of Earth analogues is possible with a precision of 2-3 m/s and ~50,000 measurements over 4 -5 yrs! IF error budget is dominated by white noise! Pilot Study: semi-dedicated telescope/spectrograph for intensive multi-year campaign on Alpha Cen. Future: Network of dedicated 2-4 m class telescopes with precision velocity spectrographs => monitor all 10-20 nearby solar-type stars over ~5 years => after a decade we would have an “Input Catalog” of candidates for space missions like the Terrestrial Planet Finder (TPF), allowing detailed follow-up observations

  16. Astrometric Detections of Exoplanets The Challenge: for a star at a distance of 10 parsecs (=32.6 light years):

  17. Space Astrometry: • Hipparcos • 3.5 year mission ended in 1993 • ~100.000 Stars to an accuracy of 7 mas • Gaia • 1.000.000.000 stars • V-mag 15: 24 mas • V-mag 20: 200 mas • Launch: 2012 • Space Interferometry mission (SIM) • 60 solar-type stars • precision of 4 mas

  18. GAIA Detection limits Casertano et al. 2008 Red: G-stars Blue: M Dwarfs

  19. Detecting Earth-like Planets with SIM: • Its 5 year mission is to boldly go where no planet hunter has gone before: • Demonstrated precision of 1 mas and noise floor of 0.3 mas amplitude. • Multiple measurements of nearest 60 F-, G-, and K- stars. • Directly test rocky planet formation „This paucity of low mass planets is almost certainly an artfact of sensitivity, as the Doppler technique struggles to detect lower-mass planets. Thus, we have reached a roadblock in planetary science and astrobiology.“

  20. Jupiter only 1 milliarc-seconds for a Star at 10 parsecs The previous simulation was only with one planet, but a system will look like this…

  21. Direct Imaging: • Need to go to space too! • Contrasts of 10-9 or better at very small angles! • 3 different concepts: • Advanced coronagraph (TPF-C) • Nulling Interferometer (TPF-I) • External Occulter TPF-I

  22. TPF-C: Limiting delta magnitude ~ 25! allowing it to search for terrestrial planets in ~150 nearby star systems. Primary mirror: 8.0 x 3.5 m

  23. TPF-C: High Level TPF-Coronagraph Contrast Error Budget Requirements. Requirement Comment Static Contrast 6.00E-11 Coherent Terms Contrast Stability 2.00E-11 Thermal + Jitter Instrument Stray Light 1.50E-11 Incoherent light Inner Working Angle 4 λ/Dlong 57 mas at λ=550 nm, D long = 8 m Outer Working Angle 48 λ/Dshort 1.5 arcsec at λ=550 nm, D short = 3.5 m Bandpass 500-800 nm Separate observ. in 3 100 nm bands.

  24. TPF-I: uses Nulling Interferometry in the infrared: Earth Venus Mars Simulated Solar System detection With TPF-I searching for terrestrial planets around as many as 500 nearby stars!

  25. External Occulter 50000 km At a distance of 50.000 km the starshade subtends the same angle as the star q

  26. Biosignatures: • The most convincing spectroscopic evidence for life as we know it is the simultaneous detection of large amounts of oxygen as well as a reduced gas, such as methane or nitrous oxide, which can be produced by living organisms. Oxygen, methane, and nitrous oxide are produced in large amounts by plants, animals, and bacteria on Earth today, and they are orders of magnitude out of thermodynamic equilibrium with each other.

  27. Biosignatures:

  28. Biosignatures: The visible and infrared spectrum, in conjunction with theoretical and empirical models, can tell us about the amount of atmosphere, the gases present in the atmosphere, the presence of clouds, the degree and variability of cloud cover or airborne dust, and the presence of a greenhouse effect.

  29. Biosignatures: Simulation of low-res, low-S/N spectrum acquired in 40 days with TPF-I

  30. Biosignatures: • We must be able to identify potential "false-positives," the nonbiological generation of planetary characteristics that mimic biosignatures. For example, while atmospheric methane may be a possible biomarker on a planet like Earth, especially when seen in the presence of oxygen, on a body like Titan it is simply a component of the atmosphere that is non-biologically-generated. • Theoretical and experimental research and analysis are necessary to secure a detailed understanding of the biosignatures that might be found.

  31. The Red Edge Plants have Chlorophyll which absorbs in green wavelengths. Planets are thus more reflective in the infrared.

  32. Biosignatures:

  33. Biosignatures: Lightcurve of Earth (w/o clouds): with clouds:

  34. Summary: • Finding Earth-like planets is extremely difficult • Need to target the nearest stars • Can use three methods (RV, Astrometry, Imaging) • Ultimate goal: collect enough photons to perform spectroscopy • and search for biosignatures

More Related