1 / 5

Z-Transformation

Z-Transformation. wobei n alle ganzen Zahlen durchläuft und z , im Allgemeinen, eine komplexe Zahl der Form. Die bilaterale Z-Transformation eines Signals x [ n ] ist die formale Reihe X ( z ):.

Download Presentation

Z-Transformation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Z-Transformation wobei n alle ganzen Zahlen durchläuft und z, im Allgemeinen, eine komplexe Zahl der Form Die bilaterale Z-Transformation eines Signals x[n] ist die formale Reihe X(z): ist. A ist der Betrag von z und φ der Winkel der komplexen Zahl in Polarkoordinaten. Alternativ kann z auch als Realteil σ und Imaginärteil ω beschrieben werden.

  2. Linearität. Die Z-Transformierte von zwei linear verknüpften Signalen ist die lineare Verknüpfung der beiden z-transformierten Signale.

  3. http://en.wikipedia.org/wiki/Digital_filters https://ccrma.stanford.edu/~jos/filters/Matlab_Filter_Implementation.html The Impulse response from a simple audio system. Showing the original impulse, with high frequencies boosted, then with low frequencies boosted. In signal processing, the impulse response, or impulse response function (IRF), of a dynamic system is its output when presented with a brief input signal, called an impulse. More generally, an impulse response refers to the reaction of any dynamic system in response to some external change

  4. The impulse response, often denoted H(z) or h(n) is a measurement of how a filter will respond to the delta function. For example, given a difference equation, one would set x(0) = 1 and x(n) = 0 for n > 0 and evaluate. In the case of linear time-invariant FIR filters, the impulse response is exactly equal to the sequence of filter coefficients h(n) = bn. In general, the impulse response is a characterization of the filter's behaviour. • A plot of the impulse response will help to reveal how a filter will respond to a sudden, momentary disturbance.

More Related