1 / 55

A Link Layer Protocol for Quantum Networks

A Link Layer Protocol for Quantum Networks. Axel Dahlberg, Matt Skrzypczyk , Tim Coopmans , Leon Wubben , Filip Rozpędek , Matteo Pompili , Arian Stolk , Przemysław Pawełczak , Robert Knegjens , Julio de Oliveira Filho, Ronald Hanson, Stephanie Wehner

lorenzo
Download Presentation

A Link Layer Protocol for Quantum Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Link Layer Protocol for Quantum Networks Axel Dahlberg, Matt Skrzypczyk, Tim Coopmans, Leon Wubben, Filip Rozpędek, Matteo Pompili, Arian Stolk, PrzemysławPawełczak, Robert Knegjens, Julio de Oliveira Filho, Ronald Hanson, Stephanie Wehner ACM SIGCOMM 2019 – Wednesday 08/21/2019

  2. Joint work with Axel Dahlberg Tim Coopmans Leon Wubben Filip Rozpędek Przemysław Pawełczak Arian Stolk MatteoPompili Rob Knegjens Julio de Oliveira Filho Ronald Hanson Stephanie Wehner

  3. Quantum Information Classical Quantum 1 0+1 0

  4. Applications Quantum Key Distribution Bennett and Brassard. Theor. Comput. Sci. 560.12 (2014): 1984 Ekert. Physical review letters 67.6 (1991): 661. 1991 Clock Synchronization Gottesman, Jennewein, and Croke. Physical Review Letters 109.7 (2012) Secure Quantum Computing in the Cloud Fitzsimons and Kashefi. Physical Review A 96.1 (2017). 2017

  5. Quantum Network Structure End Node End Node Bridge long distances End Node Repeater End Node Repeater Prepare/Measure Qubits Store/Manipulate Qubits End Node

  6. Stages of Quantum Networks Functionality Quantum Computing Networks • Cryptography • Sensing and Metrology • Distributed Systems • Secure Quantum Cloud Computing Fault-Tolerant Few Qubit Networks Quantum Memory Networks Entanglement Distribution Networks Prepare and Measure Networks Trusted Repeater Networks Time Wehner, Elkouss, and Hanson. Science 362, 6412 (oct). 2018

  7. Our Contribution • Functional allocation of quantum network stack • Systematic study of design considerations and use cases • First physical and link layer protocols • Performance evaluation and scheduling investigation

  8. Related Work Entanglement generation experiments Hensen et al. Nature 526, 7575 (2015), 682-686. 2015 Hofmann et al. Science 337, 6090 (2012), 72-75. 2012 QKD networks Liu et al. ACM SIGCOMM Computer Communication Review. Vol. 43. No. 4. 2013 Yu et al. IEEE International Conference on Computer and Communications. IEEE, 2017 Network stack sketches Aparicio et al. Asian Internet Engineering Conference. ACM, 2011 Pirker and Dür. New Journal of Physics 21.3. 2019

  9. Why a Quantum Network Stack is Different No copying! Short lifetime! Inherently connected!

  10. Sending Qubits via Entanglement End node End node

  11. Sending Qubits via Entanglement End node End node

  12. Sending Qubits via Entanglement End node End node

  13. Quantum Repeater… Entanglement Swapping End node End node Repeater

  14. Quantum Repeater… Entanglement Swapping End node End node Repeater

  15. Quantum Repeater… Entanglement Swapping End node End node Repeater

  16. Example of Quantum Hardware • Nitrogen vacancy in diamond • Communication qubit • Storage qubits • Entanglement at 1.3 km 10 mm

  17. Physical Entanglement Generation

  18. How Entanglement is Produced

  19. Our Contribution • Functional allocation of quantum network stack • Systematic study of design considerations and use cases • First physical and link layer protocols • Performance evaluation and scheduling investigation

  20. Quantum Network Stack Application Transport Network Link Physical

  21. Quantum Network Stack Application Quantum Application Protocols Transport End-to-end Qubit Delivery Network Long-distance Entanglement Generation Link Entanglement Generation on a Link Physical Quantum Device Layer

  22. Quantum Network Stack Application Quantum Application Protocols Transport End-to-end Qubit Delivery Network Long-distance Entanglement Generation Link Entanglement Generation on a Link Physical Quantum Device Layer

  23. Our Contribution • Functional allocation of quantum network stack • Systematic study of design considerations and use cases • First physical and link layer protocols • Performance evaluation and scheduling investigation

  24. Link Layer: Entanglement Generation Service CREATE OK, … OK, … QEGP QEGP

  25. Performance Metrics • Quantum Metrics • Fidelity: quality of entanglement, rate of success trade-off • Standard Metrics • Latency: issuing request to getting a pair • Throughput: pairs/s • Fairness: difference in performance metrics between nodes

  26. Use Cases • Application Use Cases • Measure directly: many pairs measured immediately • Create and keep: few pair(s) stored for processing • Network Layer Use Case • Create and keep: entanglement swapping with two pairs

  27. Design Considerations • Noise due to attempts • Producing entanglement induces noise on storage qubits • (Kalb et al, Phys. Rev. A, 97. 2018) • Avoid triggering unless both nodes agree • Noise is time dependent • Avoid waiting once entanglement made • Prior discussion preferred • Quantum CRC for error detection difficult • Applications do not require perfect entanglement • Reduce complexity

  28. Our Contribution • Functional allocation of quantum network stack • Systematic study of design considerations and use cases • First physical and link layer protocols • Performance evaluation and scheduling investigation

  29. CREATE: Expected Service CREATE Node A Node B QEGP QEGP Link Layer Physical Layer • Higher layer to QEGP • Remote node ID, # pairs, min fidelity, max time, request type, ...

  30. OK: Expected Service OK OK Node B Node A QEGP QEGP Link Layer Physical Layer • QEGP to higher layer • Entanglement ID, qubit ID, fidelity estimate, ...

  31. A Link Layer Protocol

  32. A Link Layer Protocol

  33. A Link Layer Protocol

  34. A Link Layer Protocol

  35. A Link Layer Protocol

  36. A Link Layer Protocol

  37. A Link Layer Protocol

  38. A Link Layer Protocol

  39. A Link Layer Protocol

  40. A Link Layer Protocol

  41. A Link Layer Protocol

  42. A Link Layer Protocol

  43. A Link Layer Protocol

  44. A Link Layer Protocol ?

  45. How to Prioritize CREATE Requests • Requires context and information • Simple version: first come first serve • More interesting: cater to different use cases

  46. Our Contribution • Functional allocation of quantum network stack • Systematic study of design considerations and use cases • First physical and link layer protocols • Performance evaluation and scheduling investigation

  47. Simulation Tool: NetSQUID • Discrete event simulator • Model and validate simulated quantum hardware • Model physical components e.g. fibers, nodes, and midpoint

  48. Simulation Environment: SurfSARA • Long runs • Protocol robustness: recovery mechanisms • Short runs • Performance trade-offs: latency, throughput and fidelity • Metric fluctuations: different scheduling strategies

  49. Simulation Example: QL2020 KPN PB400 node location 15km KPN PBX detector location Assumed loss 0.1 dB/splice 0.3 dB/km 10km TU Delft node location

  50. Evaluation: Quantum Hardware Model • Simulate experiments • Fidelity vs rate of success • Qubit memory lifetimes

More Related