1 / 30

Fragmentation Dynamics of H 2 + / D 2 + in Intense Ultrashort Laser Pulses

Kansas State AMO PHYSICS. Results :. initial vibrational state dependence intensity dependence pump-probe study of coherent vibrational motion. Fragmentation Dynamics of H 2 + / D 2 + in Intense Ultrashort Laser Pulses. U. Thumm. B. Feuerstein T. Niederhausen. Kansas State University.

Download Presentation

Fragmentation Dynamics of H 2 + / D 2 + in Intense Ultrashort Laser Pulses

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kansas State AMO PHYSICS • Results: initial vibrational state dependence intensity dependence pump-probe study of coherent vibrational motion Fragmentation Dynamics of H2+ / D2+ in Intense Ultrashort Laser Pulses U. Thumm B. Feuerstein T. Niederhausen Kansas State University • Introduction • Method of Calculation

  2. Laser pulse (Ti:sapphire) H2+ (D2+) Time scales Tcycle = 2.7 fs Telectr = 0.01 fs Tv=0 = 14 (20) fs Tpulse = 5 -150 fs Energies Ip = 30 eV  = 1.5 eV De = 2.8 eV Length scales l = 16000 a.u. (800 nm) R0 = 2 a.u. INTRODUCTION

  3. H0 + H+ dissociation H+ + H+ Coulomb explosion 2 2 single ionization 3 3 4 4 1 1 dissociation fast Coulomb explosion enhanced ionization (CREI) H2 H2+

  4. weak field 0w p + p 1w CE 2w 3w Charge resonance enhanced ionization strong field E [a.u.] 0w H2+ u 1w 1w g 2w 2(3)w 3w Dressed potential curves (schematic) R [a.u.] Dissociation and Ionization paths

  5. Laser field 2x1D model z p p e- R 2D Crank-Nicholson split-operator propagation METHOD OF CALCULATION

  6. R-dep. softening functiona(R) + fixed shape parameter b = 5 Fixed softening parametera = 1 a(R) adjusted to (exact) 3D pot. curve (Kulander et al PRA 53 (1996) 2562) present result Improved soft-core Coulomb potential

  7. This work (1D) Dipole oscillator strength for sg – su transitions } Kulander et al PRA 53 (1996) 2562

  8. Array for 2x1D collinear non-BO wave packet propagation “virtual detector” method z: electron coordinate R: internuclear distance Grid: z = 0.2 a.u.; R = 0.05 a.u.

  9. “virtual detector”: data analysis Dissociation Integration over z and binning  fragment momentum distribution Coulomb explosion Integration over R and binning  fragment momentum distribution

  10. RESULTS Time evolution of wave function and norm (on numerical grid) Evolution of nuclear probability density r(R,t ) dissociation probability ionization ratejz(R,t) CE probability Kinetic energy spectra of the fragments • Single pulse (I = 0.05 – 0.5 PW/cm2, 25 fs): • vibrational state and intensity dependence B)Pump-probe pulses (I = 0.3 PW/cm2, 25 fs): CE-imaging of dissociating wave packets C)Ultrashort pump-probe pulses (I = 1 PW/cm2, 5 fs): CE-imaging of bound and dissociating wave packets

  11. Coulomb explosion a - - - - - (Coulomb energy) a c b c d d b 2(3)  V 0 19 1  V 5 19 v = 4 0.2 PW/cm2 25 fs PCE(t) Dissociation PD (t) Laser Norm(t) total fragment energy [eV] log scale Contours: jz(R,t)

  12. Dissociation Coulomb explosion - - - - - (Coulomb energy) 2(3)  V 0 19 1  V 5 19 Norm(t) v = 0 0.2 PW/cm2 25 fs Laser PD (t) PCE(t) log scale

  13. Dissociation Coulomb explosion - - - - - (Coulomb energy) 2(3)  V 0 19 1  V 5 19 v = 2 0.2 PW/cm2 25 fs PCE(t) PD (t) Norm(t) Laser log scale Contours: jz(R,t)

  14. Coulomb explosion a - - - - - (Coulomb energy) a c b c d d b 2(3)  V 0 19 1  V 5 19 v = 4 0.2 PW/cm2 25 fs PCE(t) Dissociation PD (t) Laser Norm(t) log scale Contours: jz(R,t)

  15. Dissociation Coulomb explosion - - - - - (Coulomb energy) 2(3)  V 0 19 1  V 5 19 PCE(t) v = 6 0.2 PW/cm2 25 fs PD (t) Laser Norm(t) log scale Contours: jz(R,t)

  16. Dissociation Coulomb explosion - - - - - (Coulomb energy) 2(3)  V 0 19 1  V 5 19 PCE(t) v = 8 0.2 PW/cm2 25 fs Laser PD (t) Norm(t) log scale Contours: jz(R,t)

  17. Branching ratio : Dissociation vs. Coulomb explosion

  18. RESULTS II • Single pulse (I = 0.05 – 0.5 PW/cm2, 25 fs): • vibrational state and intensity dependence B)Pump-probe pulses (I = 0.3 PW/cm2, 25 fs): CE-imaging of dissociating wave packets C)Ultrashort pump-probe pulses (I = 1 PW/cm2, 5 fs): CE-imaging of bound and dissociating wave packets

  19. 2(3)  CE 1  Pump-probe experiment D2 target 0.1 PW/cm2 2 x 80 fs variable delay 0 - 300 fs Trump, Rottke and Sandner PRA 59 (1999) 2858

  20. b c a c b a Pump-probe (D2+) v = 0 0.3 PW/cm2 2 x 25 fs delay 30 fs Norm(t) PCE(t) Dissociation Coulomb explosion Laser PD (t) - - - - - (Coulomb only) log scale Contours: jz(R,t)

  21. Pump-probe (D2+) v = 0 0.3 PW/cm2 2 x 25 fs delay 50 fs Norm(t) PCE(t) Dissociation Coulomb explosion PD (t) Laser - - - - - (Coulomb only) b c a log scale Contours: jz(R,t) c b a

  22. Pump-probe (D2+) v = 0 0.3 PW/cm2 2 x 25 fs delay 70 fs Norm(t) PCE(t) Dissociation Coulomb explosion Laser PD (t) - - - - - (Coulomb only) b c a log scale Contours: jz(R,t) c b a

  23. RESULTS III • Single pulse (I = 0.05 – 0.5 PW/cm2, 25 fs): • vibrational state and intensity dependence B)Pump-probe pulses (I = 0.3 PW/cm2, 25 fs): CE-imaging of dissociating wave packets C)Ultrashort pump-probe pulses (I = 1 PW/cm2, 5 fs): CE-imaging of bound and dissociating wave packets

  24. Time dependent density matrix: Time average: Incoherent mixture H2+ (wkm-1 = 3 … 30 fs): produced by: Ion source: T ms  incoherent ensemble Ultrashort laser pulse: T  5 fs  coherence effects expected Time evolution of a coherent superposition of states

  25. D2+ D0 + D+ D2 D+ + D+ t probe 2 PW/cm2 5 fs pump 1 PW/cm2 5 fs autocorrelation

  26. Kinetic energy Ekin (R) Coulomb explosion imaging of nuclear wave packets Fragment yield Y at Ekin: Y(Ekin) dEkin= |(R)|2 dR Y(Ekin) = R 2|(R)|2 1/R d + d Probe |(R,t)|2 R D2+ Pump D2 initial |(R)|2

  27. reconstructed |(R)|2  = 10 fs original |(R)|2 |(R)|2 incoherent FC distr. |(R)|2reconstruction from CE fragment kin. energy spectra moving wave packet

  28. reconstructed |(R)|2  = 20 fs original |(R)|2 incoherent FC distr. |(R)|2 |(R)|2reconstruction from CE fragment kin. energy spectra turning point

  29. reconstructed |(R)|2 original |(R)|2 incoherent FC distr. |(R)|2reconstruction from CE fragment kin. energy spectra  = 40 fs |(R)|2

  30. reconstructed |(R)|2  = 580 fs original |(R)|2 incoherent FC distr. |(R)|2 |(R)|2reconstruction from CE fragment kin. energy spectra ‘revival’

More Related