210 likes | 369 Views
Vibrational mode theory for dielectric materials & electron-boson interactions in amorphous m aterials. Caroline Gorham 3 October 2013 ___________________________________________. csgorham@virginia.edu c arolinesgorham.com. Work thus far,.
E N D
Vibrational mode theory for dielectric materials & electron-boson interactions in amorphous materials Caroline Gorham 3 October 2013 ___________________________________________ csgorham@virginia.edu carolinesgorham.com
Work thus far, - vibrational mode theory for dielectric materials
Thermal conductivity (k) in dielectric materials D(ω) : density of states vp : phase velocity v : group velocity l: mean free path, l=v*τwhere τ is scattering time f(ω, T) : Bose-Einstein distribution
(eso) “Einstein Uncoupled oscillator” d: average length of medium range order (m.r.o) a: average nearest neighbor distance ξ(ω) : length of full-localization d : fracton (fully-localized vibration) dimension v(ω)/ω < ξ(ω) : fully-localized vibration Density of States considerations [28] Non- localized (v = vp) (sl) Softly- localized (v < vp, λ>d ) (ql) Quasi- localized (v << vp, λ<d ) (fl) Fully- localized (inter-a, v(ω)/ω< ξ(ω)) Findings in agreement with MD studies of thermal conductivity in periodic v. aperiodic/ q-periodic dielectric material [38]
Vibrational velocities Propagating vibrations :: v=vp as generalization from Debye-Holloway model Soft and quasi-localized vibrations :: sine-type Born von Karman dispersion relationship fully-localized vibrations:: derived from the relationship between diffusivity [] and relaxation times []
Vibrational mean free paths softly-localized vibrations :: relaxation is described by the Soft-Potential model [31,32] quasi-localized vibrations :: relax predominately by a frequency-dependent boundary scattering mechanism [33] fully-localized vibrations:: normal mode decomposition relaxation times by Larkin et al. [x], along with diffusivity data, allows one to determine that the fully-local vibration will transition to other modes anharmonically, at ξ(ω)
a-Si thermal properties: Heat capacity and thermal conductivity
a-Si thermal properties: thermal conductivity accumulation and MFP v. wavenumber
Work to go, • electron-boson interactions in amorphous materials - application of science to organic semiconducting material, i.e., fullerene and fullerene derivatives
Funding - Nasa Space Technology Research Fellow 2013-? [3] [21] Optimizing materials for energy harvesting on interplanetary return missions Theorized thermo-photovoltaic (TPV) maximal efficiency of 85% [1, 2] - Parameters affecting power conversion efficiencies: photon absorption [4,5], e- excitation [6,7], diffusion of electron-hole pairs to their electrodes [7,8], waste heat removal [9], thermal emission spectra of the emitter [10,11] and black-body absorption in receiver Current inefficiency due to: 1) incurred resistances due to improperly spaced electron energy levels for charge generation and 2) e- transportation to and 3) collection at electrodes caused by poor spatial geometries [12,13] ___________________________________________ Abstract can be found here: http://www.nasa.gov/spacetech/strg/2013_nstrf_gorham.html#.Uh4SXGSutmk
Material selection [21] Organic semiconducting polymer: small-band gap [14], low thermal conductivity [15], controllable fractal-dendtritic growth [16,17,18], thin-film morphology [19], cost-effective [20], current organic-photovoltaic efficiency ~10-15% [21] Recent increased efficiencies due to [21]: 1) Use of high dielectric constant materials 2) materials with more ordered nano-morphologies 3) better charge transport properties and less electronic traps 4) 3rd generation concepts: hot carrier cell, multi e—hole pairs per photon, impurity photovoltaic and multiband cells
[22] Fullerenes Fullerenes and fullerene derivatives Fullerene [24] Derivatives [23] Active layer materials for polymer-based organic solar cells. PQT-12 and P3HT are donors while PCBM are acceptors [23]– thus blends will be used C120O [25]
k in electrically conducting amorphous materials (k = kV + ke) Wiedemann-Franz Law [36] kV [W/m/K]: vibrational thermal conductivity ke[W/m/K]: : electrical thermal conductivity L [WΩ/K2]: Lorenz number σ [S/m]: electrical conductivity T [K]: temperature • Thus, ultimately, I plan to: • Tune the spectrum of vibrational localizationto control the vibrational band-gaps [37], thereby: minimizing vibrational thermal conduction and electron-boson coupling • Tune the spectrum of e- localization to control the electronic energy-levels and band-gaps, thereby: optimizing photon absorption of the wavelengths abundant on the Martian surface and in Outer Space and subsequent charge generation • Understand the conduction electron-boson coupling factor for each vibrational regime:
Bibliography [1] Nils-Peter Harder and Peter Wurfel. Theoretical limits of thermo-photovoltaic solar energy conversion. Semiconductor Science and Technology , 18(5):S151, 2003. [2] K.M. Barnes. Solar thermo-photovoltaic efficiency potentials: surpassing photovoltaic device efficiencies . PhD thesis, Massachusetts Institute of Technology, 2012. [3] Shanhui Fan and Peter Peumans. Ultra-high efficiency thermo-photovoltaic solar cells using metallic photonic crystals as intermediate absorber and emitter. Global Climate & Energy Project, Stanford University, 2008. [4] Gang Chen, Svetlana V. Boriskina, and SelcukYerci. Light trapping in thin crystalline silicon photovoltaic cells. 2012. [5] V.V. Tyagi, S.C. Kaushik, and S.K. Tyagi. Advancement in solar photovoltaic/ thermal (pv/ t) hybrid collector technology. Renewable and Sustainable Energy Reviews , 16(3):1383 – 1398, 2012. [6] G. Yu and A. J. Heeger. Charge separation and photovoltaic conversion in polymer composites with internal donor/ acceptor hetero-junction. Journal of Applied Physics , 78(7):4510–4515, 1995. [7] A. J. Breeze, Z. Schlesinger, S. A. Carter, H. Tillmann, and H.-H Horhold. Improving power efficiencies in polymer-polymer blend photovoltaic materials. Solar Energy Materials and Solar Cells , 83(2-3):263–271, 2004. [8] R. Alex Marsh, Justin M. Hodgkiss, Sebastian Albert-Seifried, and Richard H. Friend. Effect of annealing on p3ht:pcbm charge transfer and nano-scale morphology probed by ultrafast spectroscopy. Nano Letters , 10(3):923–930, 2010. [9] Yansha Jin, Chen Shao, John Kieffer, Kevin P. Pipe, and Max Shtein. Origins of thermal boundary conductance of interfaces involving organic semiconductors. Journal of Applied Physics , 112(9):093503, 2012. [10] A Licciulli, D Diso, G Torsello, S Tundo, A Ma ezzoli, M Lomascolo, and M Mazzer. The challenge of high-performance selective emitters for thermo-photovoltaic applications. Semiconductor Science and Technology , 18(5):S174, 2003.
Bibliography [11] G. Attolini, M. Bosi, C. Ferrari, and F. Melino. Design guidelines for thermo-photo-voltaic generator: The critical role of the emitter size. Applied Energy , (0), 2012. [12] S. Sun, Z. Fan, Y. Wang, and J. Haliburton. Organic solar cell optimizations. Journal of materials science , 40(6):1429–1443, 2005. [13] Barry C. Thompson and Jean M.J. Frechet. Polymer–fullerene composite solar cells. AngewandteChemie InternationalEdition , 47(1):58–77, 2008. [14] Stoichko D. Dimitrov, Artem A. Bakulin, Christian B. Nielsen, Bob C. Schroeder, Junping Du, Hugo Bronstein, Iain McCulloch, Richard H. Friend, and James R. Durrant. On the energetic dependence of charge separation in low-bandgap polymer/ fullerene blends. Journal of the American Chemical Society , 134(44):18189–18192, 2012. [15] J. C. Duda, P. E. Hopkins, Y. Shen, and M. C. Gupta. Exceptionally Low Thermal Conductivities of Films of the Fullerene Derivative PCBM. Phys. Rev. Lett., 110(1):015902, 2013. [16] Hui Liu and Petra Reinke. C60 thin film growth on graphite: Coexistence of spherical and fractal-dendritic islands. The Journal of Chemical Physics , 124(16):164707, 2006. [17] Hui Liu, Zhibin Lin, Leonid V. Zhigilei, and Petra Reinke. Fractal structures in fullerene layers: Simulation of the growth process. The Journal of Physical Chemistry C , 112(12):4687–4695, 2008. [18] Uwe Hahn, Fritz V¨ogtle, and Jean-Francois Nierengarten. Synthetic strategies towards fullerene-rich dendrimer assemblies. Polymers , 4(1):501–538, 2012. [19] Thomas Kietzke. Recent advances in organic solar cells. Adv. in Opto-Elect. , 2007(40285), August 2007. [20] Claudia N. Hoth, PavelSchilinsky, Stelios A Choulis, SrinivasanBalasubramanian, and Christoph J. Brabec. Applications of Organic and Printed Electronics , chapter 2. Springer, 2012. [21] Scharber MC, Sariciftci NS. Efficiency of bulk-heterojunction organic solar cells. ProgPolymSci (2013). [22] http://en.wikipedia.org/wiki/Fullerene [23] W. Cai et al., Solar Energy Materials & Solar Cells 94:114-127 (2010).
Bibliography [24] M. Jørgensen et al. Solar Energy Materials & Solar Cells 92:686–714 (2008). [25] K. Komatsu, G Wang, Y. Murata, T. Tanaka and K. Fujiwara, Mechanochemical synthesis of characterization of the fullerene dimer C120 [26]Gunes et al. Chem. Rev. 107:1324-1338, 10.1021/cr050149z (2007). [27] Caroline S. Gorham. Analytical model for thermal conductivity in tetrahedrally-bonded dielectric solids. (Unpublished). 2013. [28] Alexander, S. and Laermans, C. and Orbach, R. and Rosenberg, H. M. Fracton interpretation of vibrational properties of cross-linked polymers, glasses, and irradiated quartz. Phys. Rev. B., 28(8):4615-4619. 1983. [29] J. Shiomi and S. Maruyama, Phys. Rev. B 73, 205420 (2006). [30] C. H. Baker, D. A. Jordan, and P. M. Norris, Phys. Rev. B 86, 104306 (2012). [31] U. Buchenau, Y. M. Galperin, V. L. Gurevich et al. Phys. Rev. B 46, 2798 (1992). [32] M. A. Ramos and U. Buchenau, Phys. Rev. B 55, 5749 (1997). [33] Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames, Nano letters 11, 2206 (2011). [34] X. Yu and D. M. Leitner, The Journal of Chemical Physics 122, 054902 (2005). [35]D. M. Leitner, Annu. Rev. Phys. Chem. 59, 233 (2008). [36] Franz, R. and Wiedemann, G. “Ueber die Warme-Leitungsfahigkeit der Metalle”. Annalen der Physik (in German). 165(8):497-531 (1853). [37] A. Majumdar, MicroscaleThermophysical Engineering 2, 5 (1998). [38] J. Michalski, Thermal conductivity of amorphous solids above the plateau: Molecular-dynamics study. Phys. Rev. B. 45,13 (1992). [39]Z. Mao, A. Garg and S. B. Sinnott, Nanotechnology, 10:273 (1999). [40]J. W. Kang and H. J. Hwang. Fullerene nano ball bearings: an atomistic study. Institute of Phys Publishing: Nanotechnology, 15, 614-621 (2004).
APPENDIX 1: Parameters