470 likes | 531 Views
Explore the intricate processes of endocytosis and exocytosis, focusing on uptake mechanisms, cellular functions, and membrane dynamics. Delve into the roles of lysosomes, late endosomes, and autophagy in cellular transport and waste disposal.
E N D
BIOLOGY, Faculty of Pharmacy 2015. 10. 12. László KŐHIDAI, Med. Habil. MD, PhD., Assoc. Prof.Department of Genetics, Cell- andImmunobiologySemmelweis University Endocytosis - Exocytosis
Endocytosis • Phagocytosis – solid • Pinocytosis – liquid (general) Endocytosis: • Uptake of substances • Transport of protein or lipid components of compartments • Metabolic or division signaling • Defense to microorganisms
Predominant cells: unicellular cells macrophages osteoslats throphoblasts Functions: uptake of food partickles immuneresponses elimination of aged cells (RBC) Phagocytosis (1)
Phagocytosis (2) Required: • signal • membrane receptor (Fc receptor for Ab) • formation of pseudopodium • cortical actin network The formed vesicle: phagosome (hetero-; auto-)
Endocytosis • Clathrin-coated vesicles • Non-clathrin coated vesicles • Macropinocytosis • Potocytosis
Clathrin coated pits/vesicles
Function of clathrin coated vesicles • Receptor mediated endocytosis • Selective uptake of molecules • (low environmental conc.) • Membrane receptors • Concentration of ligand (1000x)
Sorting signals of secreted and membrane proteins to transport vesicles
Selective incorporation of membrane proteins Into the coated vesicles
Endosomal-Lysosomal compartmentStructure • tubular, vesicular • acidic pH - vacuolar H+ ATP-ase - proton pump • early-endosome (EE) and late-endosomes (LE) and lysosomes (L) • EE pH= 6; LE pH=5 • in EE no lysosomal membrane proteins or enzymes (in contrast LE)
Endosomal-Lysosomal compartmentFunction • sorting • transport • degradation • removal of clathrin layer • formation of EE in the EE: • dissociation of receptor-ligand complex - receptor-recycling (e.g. LDL, transferrin) • receptor-ligand complex transported together - receptor down regulation (e.g. EGF)
Pathway of LDL • insulin or other • hormones – • in receptor • mediated • endocytosis
Fate of LDL internalized by receptor-mediated endocytosis
Late endosome • early endosomes, TGN and autophagosomes feed late endosomes • lysosomal enzymes M-6-P signal is changed, the phosphate group is cleaved - receptors can not bind enzymes • the enzyme content of vacuoles is in the lumen lysosomes
Dissociation of receptor-ligand complex in late endosomes
De Duve, Ch. Nobel-prize - 1974 Lysosomes (TEM)
Lysosomes • enzymes - acidic hydrolases e.g. protease, nuclease, glycosidase, phosphatese • more than 40 types of enzymes • membrane proteins - highly glycosilated protects from the enzymes • transport molecules of the membranes - transports the products of proteolytic cleavage into the cytoplasm • the waste products are released or stored in the cytoplasm (inclusion - residual body)
LAMP = lysosome associated membrane proteins • integrant membrane proteins of • the lysosome • LAMP-2 – tarnsport of cholesterol • LAMP-2 defficiency- autophagy www.helsinki.fi/bioscience/biochemistry/eskelinen
Autophagy - Autophagosome • intake of own components • regulates the number of organells • toxic effects can also induce it
Formation of autophagosome www.helsinki.fi/bioscience/biochemistry/eskelinen E
Non-clathrin coated vesicles • There is no receptor or clathrin in the membrane • The uptake of substances is less selective • Primairly liquide-phase endocytosis
Macropinocytosis • Ruffling of the surface membrane forms inclusions • These „vacuoles” have no membrane • Size 0.2-5 mm - the mass/surface ratio is very good • Significance: • Liquide-phase pinocytosis • Taking probes from the • environment • – antigene recognition • in macrophages Film produced by F. Vilhardt and M. Grandahl.
Caveolae • 50-80 nm, bottle-like infoldings of the surface membrane • endothels, adipocytes • caveolin • potocytosis - caveolae close but not internalized, the materials enter the cytoplasm by a special carrier molecule e.g. vitamine B4 • some other caveolae enter the cell !!!
33 AA 44 AA C 101 AA N Caveolin oligomers and caveolae assembly
Functions of dynamin Clathrin-mediated endocytosis Membrane retrieval Endosome- to-Golgi transport Secretory vesicle formation in TGF Caveolae Fluid phase endocytosis
Structure of dynamin Interaction with membranes Interaction with cytosceleton Activation of GTP-ase domain
Dynamin requires GTP hydrolysis to pinching off coated vesicles • The not-hydrolysable GTP-gS is added • Dots represent binding of anti-dynamin antibodies • The long neck shows that however the coated pit was formed, • in the absence of GTP hydrolysis its pinching off is absence
Carrier mediated proteolysis • some molecules can enter lysosome directly from the cytoplasm • the signal of entry: KFERQ (Lys-Phe-Glu-Arg-Gln)
Proteasome • non-lysosomal cleavage of proteins • cylindric, multienzyme complex • parts: ATP binding-, substrate binding-, regulator-domain • location: close to the external part of ER-translocon • ubiquitin - degradation-signal - is required • the non-properly folded or damaged proteins • regulator - eliminator - role e.g. cyclins • cystic fibrosis - Cl- fac. transp. is affected as the responsible membrane protein is broken down in proteosome
Transcytosis • the ligands walk around the endosomal compartment • ligands transported from one surface to the other • e.g. immunoglobulins of the colostrum cross the intestinal epithelium by transcytosis