1 / 38

How to Learn Everything

Learning Skills for Becoming a 21 st Century Renaissance Person. How to Learn Everything. Welcome!. This is a two hour talk on “Renaissance thinking”. It is intended to be vocational rather than purely analytical.

lot
Download Presentation

How to Learn Everything

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Learning Skills for Becoming a 21st Century Renaissance Person How to Learn Everything

  2. Welcome! • This is a two hour talk on “Renaissance thinking”. • It is intended to be vocational rather than purely analytical. • Even as we look at the past, our focus remains oriented on the lessons that can be learned and the connections to our own lives. • The main topics span the disciplines of psychology, cognitive science, education, history, sociology, and philosophy. • Psychology: Why are some more amenable to specialization than others? How does this fit in with common theories of personal development? • Cognitive Science: How do we learn and reason? • Education: How does polymath training differ from specialist training? How can we “modernize” it? Is polymathy innate, or can it be learned? • History: What did historical polymaths value? How did they live? • Sociology: How did polymaths fit into the contexts of their times and societies? How were they received? How have they shaped, and been shaped by, their social norms? • Philosophy: Why become a polymath? What makes polymathy worthwhile?

  3. About Project Polymath • Mission: To start a university that trains polymaths (“renaissance people”). • Resulting in more polymaths than ever existed in history: “Thousands of da Vincis”. • Ultimate goal: new polymaths provoke a profound acceleration of progress in the arts and sciences (“Second Renaissance”). • 501(c)(3) nonprofit based in NJ. • Please consider making a tax-deductible donation. • We need your support to continue offering these courses and lectures. • Our effort and cost behind the scenes is tremendous. • These courses directly build the curriculum of our university. • We wish to continue offering existing courses while bootstrapping new ones. • As we offer more, we will begin structuring degree programs around them.

  4. The Presenter • Taught by each of the trustees in select locations; online by Michael Barnathan. • Adjunct Professor of Computer Science, Monmouth University, 2008 - Present. • Founder of The Polymath Foundation. • Ph. D., Computer and Information Sciences from Temple University, 2009 (expected). • Master of Science, Computer and Information Sciences from Temple University, 2007. • Bachelor of Science, Computer Science (math minor) from Monmouth University, 2006. michael@projectpolymath.org

  5. What is a Polymath? • Dictionary.com: “n. A person of great learning in several fields of study.” • Also called “Renaissance Men/Women”. • The ideals held during the Renaissance promoted breadth of proficiency, from academia to athletics. • Renaissance Humanism emphasized the magnitude of human potential and the freedom to pursue it. It argues that humanity’s position on the Great Chain of Being is fluid, and that one’s goal is to transcend one’s limitations. • No special connection with mathematics, despite the common root word. • Misconceptions: • Myth: Polymaths must know everything. • Fact: Polymaths simply have multiple areas of proficiency. Even two areas will satisfy the etymology. • The proper term for someone who knows “everything” is “pantomath”. • Myth: Polymaths cannot specialize. • Fact: Polymaths can and often do have specializations and talents above their considerable general proficiency. • Da Vinci is known primarily as an artist, Leibniz as a mathematician, Goethe as a poet, Jefferson as a statesman… • Historical polymaths tend to have additional proficiency in skills that allow them to convey and represent their thoughts (writing, art, music, invention…) – without this proficiency, they could not have made their ideas known. • Myth: “Jacks of all trades, masters of none…” • Fact: The accomplishments of historical polymaths often rivaled or exceeded leading specialists in their fields. Many of these fields were even invented by polymaths. • Myth: Modern polymathy is impossible. • Fact: Though modern polymaths differ from polymaths in the past, many still exist. For example, Isaac Asimov, Herbert Simon, and Douglass Hofstadter are often considered modern polymaths. • The increased amount of information is balanced by its increased accessibility. • Myth: Polymaths are useless to employers. • Fact: Polymaths are the ones who can not only do their jobs superlatively, but can also fix the network, train new employees, balance the budget, and write the reports. They have the ability of an entire team and represent an incredible boon to employers and to society as a whole. • Myth: Polymaths make shallow contributions. • Fact: Many historical periods, including the Golden Age of Athens, the Golden Age of Islam, the Renaissance, the Enlightenment, the Scientific Revolution, and the American Revolution, were initiated in no small part by polymaths. • Electronic television and the fusor were invented by a polymath, Philo T. Farnsworth. Poincare laid the foundation of relativity.

  6. Renaissance and Earlier Developed the foundations of logic. Introduced many principles of medicine and pharmacology. Invented an enormous set of creative and artistic works. Discovered the heliocentric theory of cosmology. Aristotle (384 BC – 322 BC) Philosopher, Music Theorist, Astronomer, Biologist Avicenna (980 – 1037) Physician, Philosopher, Scientist, Poet Leonardo da Vinci (1452 – 1519) Artist, Inventor, Anatomist, Scientist Nicolaus Copernicus (1473 – 1543) Astronomer, Mathematician, Economist, Physician

  7. Enlightenment and Revolution Developed calculus (w/Newton) and advanced philosophy. Invented the lightning rod, ambassador of the USA. Wrote the Declaration of Independence. Advanced optics and created many great literary works. Gottfried Leibniz (1646 – 1716) Mathematician, Philosopher, Lawyer, Linguist Benjamin Franklin (1706 – 1790) Diplomat, Journalist, Inventor, Founder of the University of Pennsylvania Thomas Jefferson (1743 – 1826) Statesman, Architect, Lawyer, Founder of the University of Virginia Johann von Goethe (1749 – 1832) Writer, Philosopher, Scientist, Diplomat

  8. 20th Century Developed the foundations of relativity (before Einstein). Developed the architecture of modern computers and M.A.D. Invented electronic TV and the fusor, among other things. Pioneer of artificial intelligence, created “bounded rationality”. Henri Poincaré (1854 – 1912) Mathematician, Physicist, Miner, Philosopher John von Neumann (1903 – 1957) Mathematician, Physicist, Computer Scientist, Game Theorist Philo T. Farnsworth (1906 – 1971) Inventor, Physicist, Electrical Engineer, Farmer Herbert Simon (1916 – 2001) Cognitive Scientist, Psychologist, Computer Scientist, Economist

  9. Polymaths Span Race and Gender! Invented the hydrometer and wrote an astronomy book Wrote many pieces of music, a morality play, and a language. The first person to be called a scientist, coined “variables”. Made massive improvements in agriculture, prolific inventor. Hypatia (c. 370 - 415) Mathematician, Philosopher, Astronomer, Inventor Hildegard of Bingen (1098 - 1179) Composer, Linguist, Visionary, Philosopher Mary Somerville (1780 – 1872) Scientist, Writer, Mathematician, Astronomer George Washington Carver (1864 - 1943) Inventor, Farmer, Scientist, Teacher

  10. And more! • There are many individuals whom I have missed, particularly among those still living. • Charles Babbage (invented the first computer, the ophthalmoscope, and a variety of other devices, co-founded an astronomical society, wrote a treatise on theology), 1791-1871. • A prolific sci-fi author. • The founders of a popular search engine. • A social scientist and economist. • A famous early 20th century artist. • Author of a popular book on logic, art, music, artificial intelligence, and consciousness. • A physicist involved in the early development of quantum mechanics. • A psychologist well known for his study of personality archetypes. • The founder of Microsoft Research, as well as one much more controversial company. Also a physicist, author, programmer, and master chef. • A famous (and somewhat controversial) actor, economist, and author. • Polymathy continues! • Many of these individuals are still alive, some young. • The living ones are still broadening their interests and/or influencing students.

  11. The Argument Against Breadth • There is more knowledge now, and it is advancing much faster. • Just keeping up with one discipline takes a great deal of dedication! • It takes a great deal of study and creativity to come up with something novel. • Division of labor solves the problem of breadth: need another skill? Just hire someone who knows how to do it! • So why worry about breadth?

  12. A Defense of Polymathy Today • There is more knowledge available, and thus more undiscovered connections. • Suppose there are n facts in a knowledgebase. There may be as many as (n2 – n) / 2 connections. • People who know both disciplines will be necessary to discover these connections. • It takes a great deal of study and creativity to come up with something novel. • According to many popular theories (which we’ll discuss), broad knowledge enhances creativity. • Those who have both domain knowledge and creative ideas will be most valuable. • This corresponds to a primary domain + a wide array of secondary skills, as most polymaths of past and present have pursued. • Larger teams introduce communication and management problems. • Not to mention cost! • And scope: No one understands the full nature of what is going on! • Excessive division of labor is thus difficult and expensive; it slows the entire team down and prevents synergies from taking place. • Polymaths make good leaders and managers. • They have a shared perspective with their followers, because they know what their followers’ work entails (because they’ve probably done it at some time). • They have experience pursuing novelty and thinking about problems in new ways. • They also make use of their full individual potential.

  13. What did polymaths value? • Seemingly cross cultural: • Intellectual Curiosity • Time Management • Intuition (knowledge “coming to them”, often in dreams). • Culture-specific: • Antiquity: breadth to understand all facets of nature and reason. • Renaissance: breadth for the sake of being more complete people, less beastly, “closer to God” (view championed by Pico della Mirandola). • Enlightenment: breadth for the sake of accomplishing more, realizing ideas. • Modern: breadth because their visions can’t be expressed in any other way? • Future: breadth because it’s an economic advantage? • All of these are good reasons!

  14. Intellectual Curiosity • Drive to explore as much as possible, learn as much as possible, express as much as possible. • Motivated not by what is, but what can be. • Not specific to polymaths: Without it, one is unlikely to master even one discipline. • The obvious one. • Leads to motivation and skill: • Many hours put into it scarcely seem like work at all. • Those fortunate enough to take up a skill in this manner during childhood (when time is plentiful) begin with an advantage. • This pursuit tends to become a central aspect of the thinker’s personality. • Often to the exclusion of other things! • Examples: • Franklin noted that a wet shirt cooled him on a hot day. • Most people would note it as a peculiarity and move on, thinking no more of it. • Franklin subsequently conducted experiments with ether and discovered the phenomenon of evaporative cooling. • Hooke (who also discovered the inverse square law, the law of elasticity, capillary action, and the wave theory of light, and who coined the word “cell”) dismantled clocks before developing one of the first pocket watches.

  15. Time Management • Two common historical approaches: • Achieve in sequence, move on to new fields after exhausting early ones. • Possible to do this within the framework of the educational system if it isn’t overly prescriptive. • Unlikely to succeed if the institution views employment as the goal of training. • End results: • Multiple skills held late in life (though perhaps not to their fullest extent, which was experienced earlier). • Idea crossover nonexistent early on, increasingly present later. Creativity grows with age. • Diverse accomplishments across many fields. • Practitioners: Franklin, Avicenna, Goethe, Leibniz, Young. • Focus first on one primary skill, but practice others concurrently until they match or surpass it. • These skills will begin as “hobbies” “on the side”. • This is not generally looked upon favorably either in employment or education. • It will likely be a self-determined and opposed effort until norms change. • You may need to hide or devalue your secondary competences at times to preserve the appearance of normalcy. Each context in which you achieve will demand you present a different part of yourself; none will see the whole. • Rare glimpses seen when circumstance demands an out-of-context skill. • Naturally suits child prodigies, who typically master one skill at a very young age. • End results: • Multiple skills held at an early age, one superlatively, but others not to their full potential until later. • Idea crossover from the start, perhaps a more creative approach. • Diverse accomplishments across many fields, with a bias towards a particular one. • Practitioners: da Vinci, Alberti, Jefferson, Alhazen, Hooke, Copernicus.

  16. The Sequential Approach • “Depth First Polymathy” • The trick: polymathy requires mastering multiple skills, but not at the same time. • Benjamin Franklin began working as a printer. • He later went into science. • Only in late life (when he had established considerable reputation and power) did he become involved in politics. • Leibniz began in law, then became a diplomat, then began working in mathematics and philosophy. • Accomplishments persist, even after their inventor moves on to new fields. • Earlier actions often facilitate later endeavors; the first endeavors tend to be the most difficult. • As one is working at a high level in one field, one should begin learning the next, to bear fruit later in life. • However, it’s important to allocate sufficient blocks of time to each area to produce significant accomplishments. • Drifting from field to field too quickly is unlikely to result in much novelty; each must fructify in turn. • You will know when it’s time to learn something new.

  17. The Concurrent Approach • “Breadth First Polymathy” • The idea: primary skill will provide employment, stability, and means of idea expression while secondary skills are developed in tandem behind the scenes. • Skills acquired in this way are synergistic. • Leonardo da Vinci began by painting, and later used his artistic ability to draw accurate renditions of human anatomy and his inventions. • Abundance of primary accomplishments early in life, gradually broadening in scope until they enclose new areas. • High degree of creativity and novelty throughout. • Currently defies social norms; may be an unfeasible strategy due to social obligations and expectations. • Many employers don’t see the point of learning unrelated skills. • Typically very difficult to enroll in “unrelated” courses in a graduate-level university program (easier on undergrad. level). • All appreciate the secondary skills on the occasions when they must be used (possibly quite often), but few support acquiring them. • More difficult to manage time: each skill demands time and effort. • Difficulty of this approach may increase with age, as more commitments must be juggled. Best to learn the primary skill as young as possible.

  18. The Learning Itself • Polymaths must be: • Able to reason within and across their domains. • Able to creatively come up with new ideas. • Able to implement those ideas. • Able to communicate those ideas to people (or they will not be recognized until someone else rediscovers them).

  19. Modes of Reasoning • Four major modes of reasoning: • Deductive: “A->B and B->C, therefore A->C” • Inductive: “This A is B, therefore all A are probably B”. • Abductive: “B happened and A causes B, so A probably happened”. • Analogy: “A is like B in some way and C is like D in the same way, so perhaps A and C are similar”. • Only deductive reasoning is indefeasible: i.e. sound, valid statements are definitely true.

  20. Deductive Reasoning • Used to follow existing knowledge to its ultimate conclusions. • Often employed in precise, exacting disciplines, such as mathematics and philosophy. • This is what people usually think of when they think of “formal logic”. • Admits no falsehood: • If the premises are valid and the reasoning is sound, the conclusion will be valid. • Cannot derive entirely new knowledge: • All new theorems are consequences of existing theorems. • There is no power to generalize or to extend beyond the implications of existing knowledge. • Examples: • “Socrates is a man. All men are mortal. Therefore, Socrates is mortal.” • There’s no escaping it! If we assert that Socrates is a man and all men are mortal, we must conclude that Socrates is mortal. • This is also bound by the laws of logic and can still assess the validity of our existing knowledgebase: • If Socrates is not mortal, either Socrates is not a man or not all men are mortal. • An inconsistency indicates either flawed premises or flawed reasoning.

  21. Inductive Reasoning • Used for making generalizations from specific examples. • Primary uses in “intuitive” fields with few formal rules, such as the arts. • But used more in mathematics and science than mathematicians and scientists care to admit. • Can discover new facts, but not with certainty. • It is easy to make false (invalid) generalizations. • It is easy to make valid but unsound generalizations based on incomplete knowledge. • “All sheep are white” (except for the black sheep). • True conclusions now may also become false in the future. • It isn’t always intuitive: • “Raven paradox”: We see a raven and conclude that all ravens are black (inductively). Therefore, anything not black is not a raven (deductively). Thus, everything we see that is not black and not a raven (e.g. a green apple) offers evidence that ravens are black, which is counterintuitive. • Poorly formalized; there is no accepted formal axiomatic system for inductive logic, as there is with deductive (and few proposals for one). • This form of logic is often subconscious and intuitive. • We use it instinctively to make many types of generalizations; it probably plays no small part in the formation of stereotypes when applied to people.

  22. Abductive Reasoning • Explanatory: attempts to discover the cause of an observation. • Favors the cause that best explains the observed evidence. • Also encapsulates Occam’s Razor: other things equal, the simplest solutions are usually favored. • Used in science, diagnosis, forensics, and debugging. • Answers the question “why is this happening?” • The first steps of the scientific method are abductive: observation and hypothesis. • Not certain; multiple potential explanations for an observation. • Some clearly more realistic and probable than others. • Sometimes formalized by inverting deductive reasoning. • Example: • The grass is wet. Therefore, it must have rained. • This is not the only explanation: “The grass is wet; someone must have watered it”. • Some explanations can be wildly improbable: “The grass is wet; aliens must have visited earth and diverted water from the ocean into the soil.”

  23. Analogy • Seeks to apply relations between and properties of one set of concepts to another similar set of concepts. • Useful for discovering new ideas (and thus in creative pursuits) and in instruction. • Innovation: “This works in one domain; can it apply to another?” • Teaching: introducing an abstract concept by relation to something already well understood. • This is the foundation of cross-disciplinary reasoning: grasping and exploiting the commonalities between diverse topics. • However, it is very easy to overextend the process of analogy. • Examples: • Just as a photo of the same tree differs by the exposure of the camera, so does our perception of reality differ by the state of our senses and mind. (Photography :: Relativism) • As many instruments in unison increase the power but not the harmony of a part, so do many identical thoughts increase the momentum but not the originality of an organization. (Music :: Leadership)

  24. The Importance of Each • Most specialists need only master one or two of these modes. • Polymaths must master them all! • Inductive, intuitive thinking to notice patterns. • Abductive thinking to discover the underlying reasons for these patterns. • Analogy to create new ideas based on these patterns. • Deductive, linear thinking to pursue the implementation of these ideas. • The first three are key to the creative process of discovery. The fourth is integral to realization of those discoveries.

  25. “Intelligence” and Genius • Most people think of IQ when they think of intelligence. • But they think of people like Einstein and Newton rather than vos Savant and Sidis when they think of genius. • That is because geniuses are known for their accomplishments, not how intelligent they are. • Richard Feynman, a famous physicist, had an IQ of just 124. • Most “great geniuses” were also around before IQ testing was developed. • Retrospective lists disproportionately represent polymaths, but these likely overestimate based on breadth and precocity. • Intelligence is only a tool: • Extraordinary intelligence is not required for genius. • And like any tool, it is only useful if properly wielded. • While crafters appreciate the value of their tools, their purpose is higher than to merely use them; they wish to create something with them. • How you use it depends on your purpose. • Whatever it is, your intelligence will help you get there. • But rare is the man, however intelligent, who goes somewhere without meaning to! • So as we discuss IQ and giftedness, please note that neither a low nor high IQ is an excuse for either action or inaction. You are what you make of yourself.

  26. Intelligence Models • General intelligence model: Currently the dominant model. Spearman observed that scores in different subjects tended to be correlated, and hypothesized the existence of a latent (hidden) variable called g, or the general intelligence factor. • Under this model, IQ subscores tend to be strongly correlated to overall IQ (that is, little variance exists). • This has historically been the trend. • Subscores 2 SDs (30 points) or more below the mean are considered learning disabilities, even if high. • Multiple intelligences: Proposed later by Gardner. Proposed many independent types of intelligence: • Logical-Mathematical: Ability to manipulate and reason about abstract symbols and rules in a structured domain. • (According to Gardner, this is what IQ tests tend to measure). • Verbal-Linguistic: Facility with words and language (shared symbols with concrete meanings). • Visual-Spatial: Ability to mentally visualize and manipulate objects in space. • Body-Kinesthetic: “Motor Learning”: Facility with tasks involving motion and awareness of the body. • Musical: Facility with music (and often speech), pitch, rhythm, harmony, and hearing. • Interpersonal: Ease of interaction with others, high degree of empathy, works well in a group. • People with high interpersonal intelligence tend to be extroverts (and thus derive energy from social situations). • Intrapersonal: High self-awareness, capability to reflect, ability to work independently, self-judgment. • People with high intrapersonal intelligence tend to be introverts and also tend to be perfectionists. • Naturalistic: Awareness of one’s surroundings and one’s relation to them, ability to classify and nurture. • (The existence of this intelligence is debated). • Encapsulated within the theory of multiple intelligences is the traditional model of learning: • Visual: Learns best by seeing patterns through drawings, diagrams, or figures. • Aural: Learns best by hearing, acquiring patterns through speech or music. • Kinesthetic: Learns best by doing, learning by directly manipulating tangible objects. • The theory of multiple intelligences does not dictate how many intelligences a person may possess. • Conversely, the general intelligence model is strongly supportive of polymathy. • Under this model, people with high general intelligence would be expected to perform well globally.

  27. Positive Disintegration • Developmental theory posited by Kazimierz Dabrowski and often cited in gifted education. • Theorizes steps to development of an authentic (individually unique) personality. • And thus conception of a unique purpose. • Which drives the application of your intelligence and its ultimate significance. • Unlike most personal development theories, most individuals do not progress. • They remain at a state known as primary integration, driven by their biological impulses (first factor) and social conditioning (second factor). • And they are happy being there! There is little psychological tension in this state. • Every action is justified either by one’s own impulses (“it’s right for me”) or by society (“everyone does it”). • Sparked by overexcitabilities; driven by “developmental potential”. • Unique in that developmental potential is represented by predispositions (sensitivities) for certain types of psychological tension and crisis. • These predispositions are overexcitabilities: disproportionate sensitivities to various types of intellectual or emotional stimuli. • Crises arise and shatter our existing foundations; as personality develops, these crises become increasingly “multilevel”. • Values begin to be viewed as “right” and “wrong”, and decisions begin to revolve around what the individual perceives as “the right way to live”. A hierarchy is built. Previously held values are rejected. • These crises are very taxing, and many who experience them regress to primary integration. • According to Dabrowski, a few cannot deal with these crises and suicide. • Eventually one lives autonomously by one’s own unique code of values (“the third factor”). Conflict ceases because one’s own values justify one’s decisions, irrespective of their relation to impulse and society. • Dabrowski advocated “autopsychotherapy” (rigorous self-assessment and reflection) as well as awareness of the positive nature of developmental crises to prevent negative outcomes. • This has interesting links with the concept of intrapersonal intelligence. • Dabrowski advocated writing an autobiography, reflecting on lessons learned in past experiences, and questioning one’s values and actions. • The link to intelligence: Gifted children were found to possess overexcitabilities disproportionately. • However, pressure to fit in (and “gifted underachievement”) is well documented in gifted children, and many do not have the environment necessary to continue progressing. • One objective of gifted education held by proponents is thus to foster their developmental potential.

  28. Overexcitabilities • In one word, people with OE are unusually intense. • Overexcitability is intrinsic. It is an abundance of energy and sensitivity and will never disappear. Nor should it! Adults may suppress or channel it, but it is still present. • Psychomotor: “Can never sit still”, restless, constant need to be moving, high-energy. • Differentiated from ADHD: children with psychomotor OE have no difficulty focusing. • Sensual: Increased awareness of and response to sensory stimuli, such as bright light, food, and aesthetic beauty. • Imaginational: Contrives imaginary friends and worlds, daydreams, “head in the clouds”. • Intellectual: Penchant for problem solving, learning, puzzles. Often begins developing an extraordinary knowledge base from a young age (unless development stops, it’ll keep growing to prodigious heights into adulthood). • Emotional: All emotions are felt more intensely. Often a strong sense of justice and morality, may feel both vulnerable and alienated from peers who do not feel the same way. • Dabrowski viewed emotional OE as the most fundamental; the source of the others. • In these sensitivities, we can see many future possibilities, and some correspondence with the notion of multiple intelligences. E.g.: • Will someone with high imaginational OE grow up to write plays or fantasy novels? • Will an emotionally overexcitable child become a judge, defending the innocent from injustice?

  29. Developmental Potential • OE is a facet of developmental potential. • The first to manifest; the earliest sign. • Noticed in the vast majority of gifted children studied. • This sensitivity is a great gift, but also exposes individuals to developmental crises and existential angst later in life. Dabrowski called it “the tragic gift”. • Another factor is development of specific abilities and talents. • This is where polymaths begin differentiating themselves. • These are early indications of competence and forms of expression. • Most polymaths have these! For da Vinci, it was art, for Franklin it was writing, for Jefferson it was law… • Interestingly, many polymaths began by showing precocity for languages, often learning 4 of them or more in childhood. • It’s important to note that this need not occur during childhood; there is no timeline to Positive Disintegration. • Finally, “the third factor”, a drive towards individual growth and autonomy, must be present. • This is the motivating factor for disintegrative crisis: “to be oneself, no matter the cost”. • It may be accompanied by a sense that “everyone is the same”, “society has no place for someone like me”, or “society is backwards; my way is better”. • Dabrowski called this “positive maladjustment”. These clashes ultimately propel the individual out of primary integration by calling commonly held behaviors and values into question.

  30. Developmental Levels • Primary Integration • The majority of the population remains at this level or is at the border between levels 1 and 2. • There is little internal conflict: everything is justified either by one’s own impulses (1st factor) or social norms (2nd factor). • This is therefore a stable state, but no authentic personality exists. The desires of people at level 1 may as well be interchangeable. • Unilevel Disintegration • The individual is thrust spontaneously into a brief, intense crisis in which he or she must choose between “equal” (unilevel) developmental paths. • Neither choice is more supported by impulse or society and the third factor has not yet been expressed, thus the individual has no ground to stand on. • Due to this, existential despair is common. There is literally no purpose perceived as satisfactory to existence at this level. • Society has no answers. Biology has no answers. The answers must come from you and you’re not ready. • Unstable; “dissonant”; must “resolve” either back down to level 1 or forward to level 3. • One may tune out the cognitive dissonance and return to the comfort of social norms… • Or one may begin assigning one’s own degree of individual meaning to different values. • Those with developmental potential who make it to this point and regress exhibit “negative adjustment”, sacrificing their own autonomous views in favor of stability. • The majority of the population makes it to this level, regresses, and remains at level 1. • Spontaneous Multilevel Disintegration • One is thrust into a crisis where one option is more valued than the other, involuntarily (“it just happens”). • Now there’s no turning back. When a higher view of life is seen, choices that reflect lower values become untenable. • Directed Multilevel Disintegration • An individual voluntarily begins to examine his or her values and deliberately adopts a course which reflects an ideal state of life according to those values. • Values that do not stand up to scrutiny are discarded; new values are adopted. An individual strives to bring his or her behavior into harmony with these values. Personality begins to emerge. • Secondary Integration • A state of harmony very different from the first. • Primary integration is characterized by an externally driven system of morality. • Secondary integration, by contrast, is a state in which decisions are justified in accordance with a person’s self-chosen ideals. • One’s values, choices, and actions are unique and in alignment. • Discordant social norms present no internal conflict; one’s own values are judged superior. • However, external conflict is still possible, as others may not recognize one’s values. • True originality is manifest at this level, often in creative works and unique, authentically prosocial endeavors. • One strives to represent one’s vision of how the world should be, and attempts to reconcile society as it is against that vision. • Individuals at this level thus act to increase the developmental level of their societies.

  31. How does this relate? • Most polymaths have shown evidence of going through this process. • Many recount imaginational, emotional, or intellectual OE in their early autobiographies. • Goethe even turned his crises into a literary movement (“sturm und drang”: “Storm and stress”). • The early impression of da Vinci was as a frenetic and unfocused youth (“He would have been very proficient in his early lessons, if he had not been so volatile and flexible” --Vasari), implying one or more OEs. (Note that these traits are why he is praised today). • Copernicus and Galileo ran famously counter to the prevailing norms and theories of their time and discipline. • In so doing, they advanced those norms. • Compare the quotes of any two polymaths and you will see a clear emphasis on different values (Jefferson valued liberty and reason, Poincare valued an almost artistic beauty of mathematics and ideas, Franklin diligence and virtue…) • Polymaths today must still go through this process. • Specialization is a social norm; polymathy goes against the grain. • It must be valued as the proper way to live despite society. • Overexcitabilities can drive a pursuit of knowledge and expression. • Polymaths are often known for the originality of their art and inventions.

  32. Intuition • A nonlinear, subconscious process through which connections and patterns are realized. • Valuable because it is universal. • Intuition is possible with little or no background, and crosses readily from one discipline to another. It is enhanced by breadth of experience, however. • Most polymaths had highly developed intuitions and brought everything they knew to the table: • Henri Poincare would work for 2 hours in the morning and 2 hours in the evening, and would derive the majority of his results in between. • He was among the first great mathematicians to explain his reasoning, which was founded primarily on intuition. • He fell into fierce contention with other mathematicians, who believed that logic was at the heart of mathematics and that intuition had little or no place in the field. • The mathematician Jacques Hadamard agreed with Poincare. He polled 100 leading physicists and found many of them to utilize a similarly intuitive process, by which ideas revealed themselves swiftly and completely. • Farnsworth derived ideas for electronic TV from the patterns crossed by a tractor over a field. • Simon brought the rigor of study in the natural sciences to the study of cognition. • Intuition can be strengthened through techniques such as brainstorming and freewriting (forcing yourself to keep writing whatever comes to your mind). • Carrying around a notebook and writing whatever ideas come to mind is a way to raise awareness of the process of intuition (not to mention gathering useful ideas for later use). • More essentially, intuition can be strengthened by gaining experience in as many situations as possible. • According to the recognition-primed decision model, intuition is a result of perceiving similarities between the current situation and previous scenarios.

  33. Creativity • The original concept of “genius” referred not to intelligence but to creativity. • It can be defined as the ease with which one synthesizes original ideas. • According to Maslow, creativity was a product of self-actualization: freeing oneself of basic needs and clearing the way for realization of one’s full potential. • Dabrowski viewed creativity as a result of the third factor. • Common model of the creative process: • Preparation: exposure to and exploration of the problem domain. • Incubation: subconscious thinking about the problem (intuitionat work), during which little progress is made. • Illumination: the idea bursts forth into the conscious mind. • Verification: conscious elaboration and validation of the idea. • Steps to creativity: • Seek an environment conducive to the creative process: McLaren argues that personal autonomy is integral to this environment. Being with the right people will help tremendously. • Build breadth. Nearly all sources agree that more knowledge and experience will enhance creativity. • Challenge yourself. Tackle problems that require highly innovative solutions. You will rise to meet them. • Suspend judgment of early ideas; apply it later (verify last). Premature judgment will not only kill specific ideas, but will slow the formation of new ones. • Focus on the problem for hours at a time; try to build up the highly productive state known as flow, in which awareness becomes totally centered on the task at hand. • Employ both convergent and divergent modes of thought: • Convergent thinking is traditional problem solving. There is one best answer, and the goal is to find it. • Divergent thinking is open-ended. There are many possible solutions and much room for innovation. • Be happy (or depressed). Both positive and negative emotions have been associated with creativity. • (But correlation is not causation… perhaps this is a manifestation of overexcitability?)

  34. Leadership • So you’ve come up with a brilliant creative solution to a big problem. • But this is a big problem. Too big to tackle alone. • You’ll need to convince others to help you. • In short, you’ll need to lead. • There are many styles of leadership, each suited to different leaders and teams. • Leadership is not management. Leaders inspire. Managers organize. • You will need to bring all of your skills to bear in leadership; you’ll be the role model. • Fortunately, as a polymath, you have a huge advantage here. • Your most integral skills will be your communication skills: • Writing (articulating your message as accurately as possible). • Verbal presentation (convincing people of the need for your leadership). • Marketing (reaching people in the first place). • Next are the unique skills you bring to the solution. • Polymaths make ideal leaders because they bring so many of these to the table. • Even if you have all of the skills required to solve the problem, you won’t have the time or energy to do it by yourself. Don’t skimp on manpower.

  35. Employment • Polymaths in the workforce are in a unique situation. • They are often hired for proficiency in a single skill. • (This is one reason why acquiring a primary proficiency as early as possible remains important). • Their additional skills may manifest in response to organizational crises. • Skills that show when the organization has need of them. • This is a boon during the crisis, but the employer may continue to frown on polymathy after it is resolved. • Employers are often not supportive of breadth. • Viewed as “unrelated” pursuits. • Emphasis on performance of primary job function; additional general competence is secondary. • Best environments for polymaths are ones that value creativity, autonomy, result-driven work, and general learning. • This is one secret to Google’s success. • Result-driven -> less micromanagement, more time to focus on improving one’s methods, making oneself faster and better.

  36. Entrepreneurship • Perhaps no better place for a polymath’s talents to shine. • Startups have few resources, need to do more with less. • Expensive to hire people. • Polymaths can fill many roles in the organization at the same time. • Even with an abundance of resources, smaller teams mean less communication overhead. • Good for the polymaths themselves too. • Completely autonomous and result-driven: your success depends on how well you can create and market your product or service. • Few people, if any, to answer to (except your customers). • Creativity is rewarded: it results in a better solution, which places you ahead of your competition. • New skills are developed as necessity dictates; less availability of resources means less offloading work to others.

  37. Summary • Polymaths are known for their creativity and versatility. • Their most common traits have historically been time management, intellectual curiosity and intuition. • Intellectual curiosity: why they cared enough to learn as much as they did. • Time management: How they learned it. • Intuition: Glimpses of patterns and commonalities. • Two common approaches: • Sequential: One subject at a time, start learning one while mastering another. • Concurrent: One primary subject, many additional proficiencies growing at once. • Philosophy: • Polymaths make more efficient use of their potential. • They capture more of the essential beauty of the world. • And they can still flourish today! • The need for interdisciplinary thought is as pressing as ever. • Polymaths make ideal leaders, employees, entrepreneurs, and policymakers.

  38. A Nonprofit Organization of New Jersey, USA http://www.projectpolymath.org

More Related