120 likes | 261 Views
Scalar field quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects. Carlo Schimd DAPNIA / CEA Saclay @ DUNE Team & Institut d’Astrophysique de Paris. I.Tereno, J.-P.Uzan, Y.Mellier, (IAP), L.vanWaerbeke (British Columbia U.),. In collaboration with:.
E N D
Scalar field quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects Carlo Schimd DAPNIA / CEA Saclay @ DUNE Team & Institut d’Astrophysique de Paris I.Tereno, J.-P.Uzan, Y.Mellier, (IAP), L.vanWaerbeke (British Columbia U.), ... In collaboration with: Based on: astro-ph/0603158 July 2006, Barcelona IRGAC 2006
Dark energy: parametrization .vs. “physics” inspired {baryons,g,n} + DM + GRalonecannot account for the cosmological dynamics seen by CMB + LSS + SNe + ... Dark energy H(z)-Hr+m+GR(z) 1/0 approach:parameterization of w(z) departures from LCDM limitation in redshift ? Not adapted for combining low-z and high-z observables and/or several datasets pivot redshift zp : observable/dataset dependent perturbations: how ? Fitted T(k) parameters physics # p.: limitation to likelihood computation Physics-inspired approach: classes experimental/observational tests Other “matter” fields? cosmological constant, quintessence, K-essence, etc. GR : not valid anymore? scalar-tensor theories, braneworld, etc. Validity of Copernican principle? effect of inhomogeneities? w : full redshift range high-energy physics ?! perturbations: consistently accounted for small # p. Uzan, Aghanim, Mellier (2004); Uzan, astro-ph/0605313
Quintessence by cosmic shear. I gal obs convergence k shear (g1, g2) v i k(l), g1(l), g2(l): geodesic deviation equation LSS: N-pts 2-pts correlation functions in real space: Map2 (q) ,, ... Remark: just geometry, valid also for ST gravity C.S., J.-P.Uzan, A.Riazuelo (2004)
Quintessence by cosmic shear. II • ...normalization to high-z (CMB): the modes k enter in non-linear regime ( s(k)1 ) at different time 3D non-linear power spectrum is modified 2D shear power spectrum is modified by k = / SK (z) QCDM GR Poisson eq. with respect to L , quintessence modifies angular distance q(z); 3D2D projection growth factor amplitude of 3D L/NL power spectrum amplitude + shape of 2D spectra NON-LINEAR regime: • N-body: ... • mappings: stable clustering, halo model, etc.: e.g. Peacock & Dodds (1996) Smith et al. (2003) NLPm(k,z) = f[LPm(k,z)] • Ansatz:dc, bias, c, etc. not so much dependent on cosmology at every z we can use them, provided we use the correct linear growth factor (defining the onset of the NL regime)... calibrated with LCDM N-body sim, 5-10% agreement Huterer & Takada (2005)
pipeline * * C.S., Uzan & Riazuelo (2004) * * * Riazuelo & Uzan (2002) * • Q models: self-interacting scalar field minimally/non-minimally couled to gmn • no fit for power spectra • (restricted) parameter space: {WQ, a, ns, zsource}; marginalization over zsource * CMB can be taken into account at no cost
wide survey: Q - geometrical effects (IPL) Peacock & Dodds (1996) CFHTLS wide/22deg2 (real data) top-hat variance CFHTLS wide/170deg2 (synth) top-hat variance inverse power law CFHTLS wide/170deg2 (synth) aperture mass variance CFHTLS wide/170deg2 (synth) top-hat variance only scales > 20 arcmin
wide survey : Q - geometrical effects (SUGRA) Peacock & Dodds (1996) CFHTLS wide/22deg2 (real data) top-hat variance CFHTLS wide/170deg2 (synth) top-hat variance SUGRA CFHTLS wide/170deg2 (synth) aperture mass variance CFHTLS wide/170deg2 (synth) top-hat variance only scales > 20 arcmin
cosmic shear + SNe+ CMB: Q equation of state VIRMOS-Descart + CFHTLS deep + CFHTLS wide/22deg2 + “goldset”@SNe inverse power law SUGRA (ns,zs): marginalized ; all other parameters: fixed Mass scale M: indicative SNe: confirmed literature TT-CMB: rejection from first peak (analytical (Doran et al. 2000) & numerical) Cosmic shear (real data only): • IPL: strong degeneracy with SNe • SUGRA: • 1) beware of systematics! (wl: calibration when combining datasets) • 2) limit case: prefectly known/excluded Q model (weakly a-dependence) Van Waerbeke et al. (2006)
Q by cosmic shear : Fisher matrix analysis present setup: DUNE (pi: A.Réfrégier): wide, shallow survey optimized for WL + SNe SNe “goldset” • A= 20000 deg2 • ngal = 35/arcmin2 TT @ CMB WMAP 1yr CFHTLS wide/170 • A = 170 deg2 • ngal = 20/arcmin2 All but (a,Wq) fixed inverse-power law SUGRA = real data analysis +treion: all but (a,Wq,ns) fixed, (treion,zs) marginalized CFHTLS wide/170 DUNE inverse-power law
conclusions & prospects quintessence at low-zby SNe + cosmic shear,using high-z informations (TT-CMB/Cl normalization) for the first timecosmic shear data to this task astro-ph/0603158 pipeline: Boltzmann code + lensing code + data analysis by grid method: dynamical models of DE (not parameterization): fCDM consistent joint analysis of high-z (CMB) and low-z (cosmic shear, Sne,...) observables no stress between datasets; no pivot redshift NL regime: (two) L-NL mappings (caveat) Q parameters (seem to) feel only geometry wide, shallow cosmic shear surveys are suitable Work in progress: analysis of realistic (=dynamical) models of DE using severalparameters 1. + CMB data; 2. MCMC analysis (Tereno et al. 2005) other techniques: cross-correlations (ISW), 3pts functions, tomography in collaboration with: I.Tereno, Y.Mellier , J.-P. Uzan, R. Lehoucq, A. Réfrégier & DUNE team
Q models, datasets & likelihood analysis Q models: ; • CMB: TT anisotropy spectrum @ WMAP-1yr initial conditions/ normalization • SNe: “goldset” Riess et al. (2004) • cosmic shear: VIRMOS-Descart VanWaerbeke, Mellier, Hoekstra (2004) CFHTLS deep Semboloni et al. (2005) CFHTLS wide/22deg2 & 170deg2 (synth) Hoekstra et al. (2005) wl observables:top-hat variance; aperture mass variance U cosmic shear: by wide-field imager/DUNE-like satellite mission (restricted) parameter space: {WQ, a, ns, zsource}; marginalization over zsource