470 likes | 1.31k Views
Тема урока: «Соотношения между сторонами и углами треугольника. Решение задач». Девиз урока: « Дорогу осилит идущий, а математику – мыслящий.». « Три качества: обширные знания,
E N D
Тема урока: «Соотношения между сторонами и углами треугольника. Решение задач»
Девиз урока: « Дорогу осилит идущий, а математику – мыслящий.» « Три качества: обширные знания, привычка мыслить и благородство чувств – необходимы для того, чтобы человек был образованным в полном смысле слова» Н.Г.Чернышевский • Цели урока: • Закрепление знаний, умений и навыков по изученной теме, устранение пробелов. • 2.Совершенствование навыков решения задач на применение теоремы о площади параллелограмма, теорем синусов и косинусов. • 3. Показать применение теорем синусов и косинусов в решении практических задач. • 4.Развитие логического мышления и речи: умение логически обосновывать суждения, проводить систематизации.
Тест: 1.По теореме синусов: а) стороны треугольника обратно пропорциональны синусам противолежащих углов; б) стороны треугольника пропорциональны синусам противолежащих углов; в) стороны треугольника пропорциональны синусам прилежащих углов. 2.По теореме косинусов: Для треугольника АВС справедливо равенство: а) АВ2 = ВС2+АС2 - 2ВСАСcosВСА б) ВС2 = АВ2+АС2 - 2АВАСcosАВС в) АС2 = АВ2+ВС2 -2АВВСcosАСВ
3.Если квадрат стороны треугольника равен сумме квадратов двух других его сторон, то эта сторона лежит против : а) тупого угла, б) прямого угла, в) острого угла 4.По теореме о площади треугольника: а) площадь треугольника равна произведению двух его сторон на синус угла между ними, б) площадь треугольника равна половине произведения двух его сторон на угол между ними, в)площадь треугольника равна половине произведения двух его сторон на синус угла между ними.
5.Для нахождения площади параллелограмма выберите верные формулы: • S = ½ ·a · h; б) S = ½ ·a · b · sin α; • в) S = a · b · sin α; г) S = a · h. b h α a 6.В треугольнике ABC А = 30º, ВС = 3. Радиус описанной около ∆АBC окружности равен: А) 1,5 б) 2√3 в) 3. Ответы к тесту: 1 – б 2 – а 3 – б 4 – в 5 – в , г 6 – а Т Д С Т Д С
Решение треугольников Задача № 1 Дано: Решение: a = 20 см γ = 180° - (β + ) β a с = 75 ° γ = 180° - (75° + 60°) = 45° γ β = 60° a / sin =b/sin β =c/sin γ b Найти: b = a (sin β / sin γ) γ - ? b - ? c - ? b = 20 (sin 60° / sin 75°) 20 (0,866 / 0,966) 17,9 c = a (sin γ / sin ) c = 20 (sin 45° / sin 75°) 20 (0,7 / 0,966) 14,6 Ответ:45°; 17,9 см; 14,6 см.
c = a ² + b ² - 2 a b cos γ c = 49 + 529 – 2 7 23 (- 0,643) 28 Решение треугольников Задача № 2 Дано: Решение: a c a = 7 м β b = 23 м γ γ = 130° b Найти: cos = (b ² + c ² - a ²) / 2 b c - ? β - ? c - ? cos = (529 + 784 – 49) / 2 23 28 0,981 11° β =180° - ( + γ) = 180° - (11° + 130°) 39° Ответ:28 см;39°; 11°.
Решение треугольников Задача № 3 Дано: Решение: a = 7 см cos = (b ² + c ² - a ²) / 2 b c β c a b = 2 см cos = (4 + 64 – 49) / 2 2 8 0,981 c = 8 см 54° Найти: cos β = (a ² + c ² - b ²) / 2 a c γ • - ? • β- ? • γ - ? cos β = (49 + 64 – 4) / 2 7 8 0,973 b β 13° γ 180° - ( + β) = 180° - (54° + 13°) = 113° Ответ:54°; 13°; 113°.
Решение треугольников Задача № 4 Дано: Решение: a / sin =b/sin β =c/sin γ a = 12 см β sin β = (b / a) sin a c b = 5 см sin β = (5 / 12) 0,866 0,361 = 120° β1 21° иβ2 159°, так как - тупой, а в треугольнике может быть только один тупой угол, тоβ 21°. γ Найти: • c - ? • β- ? • γ - ? b γ 180° - ( + β) = 180° - (120° + 21°) = 39° c = a (sin γ / sin ) c = 12 (sin 39° / sin 120°) 12 (0,629 / 0,866) 8,69 Ответ:8,69 см; 21°; 39°.
Тригонометрия берёт своё начало в древней Греции. Для решения прямоугольного треугольника, определения его элементов по трём данным сторонам треугольника вначале составляли таблицы длин хорд, соответствующих различным центральным углам круга постоянного радиуса. Эти таблицы были составлены астрономом-математиком Гиппархом из Никели (2 в. до н.э.). Знаменитое сочинение – Альмагест астронома Клавдия Птолемея включает в себя звёздный каталог таблиц хорд. Таблица хорд Птолемея составлена в шестидесятеричной системе счисления через полградуса и играла роль таблицы синусов (полухорд). Таблицы синусов были введены индийскими астрономами, которые рассматривали и линию косинуса. Дальнейшего развития тригонометрические таблицы достигли в Индии и трудах учёных стран ислама. Абу-л-Вафа пользовался величиной, обратной косинусу (секансом) и синусу (косекансом) и составил таблицу синусов через каждые 10 °. Точные таблицы появились благодаря ал-Каши, Региомонтану и другим европейским учёным 16-18 вв. Историческая справка Первые шаги на пути к таблицам синусов
Историческая справка Дальнейшее развитие тригонометрии В России первые геометрические таблицы были изданы под участием Л.Ф.Магницкого в 1703 г. Под названием «Таблицы логарифмов, синусов и тангенсов к научению мудролюбивых тщателей». Синус и косинус встречаются в индийских астрономических сочинениях в 4 – 5 вв. В 15 в. Региомонтан и другие математики применял для понятия «косинус дуги» латинский термин «sinus complementi».От перестановки и сокращения слов (co-sinus) образовался термин косинус. В 9-10 вв. учёный ал-Баттани установил, что в прямоугольном треугольнике острый угол можно определить отношением одного катета к другому. Современный вид тригонометрия получила в трудах Леонарда Эйлера. Он разработал её как науку о тригонометрических функциях.
B 43 C 4 30 A H D ЕГЭ 2009 Задача: Площадь параллелограмма ABCD равна 163, угол А равен 30, а сторона ВС равна 43. Найти диагональ BD. • Решение: • BH AD • 2) S = AD BH; • 163 = 43 BH; BH = 4; • ABH(A = 30; AHB = 90) AB =8 см; • ABD: по теореме косинусов • BD2 = AB2 + AD2 2AB AD Сos 30 • BD2 = 64 + 48 2 8 43 3/2 • BD2 = 112 96; BD2 = 16 • т.к. BD 0, то BD = 4 • Ответ: 4
B C 30 33 30 A H D ЕГЭ 2009 Задача: Площадь параллелограмма ABCD равна 93, диагональ BD равна 33, CBD = 30. Найти сторону АB. • Решение: • BH AD • 2) BHD(BHD = 90; BDH = 30), • тогда BH = 33/2; • 3) ABCD – параллелограмм • S = AD BH; • 93 = AD BH; 93 = AD 33/2; • AD = 6; • ABD: по теореме косинусов • AB2 = AD2 + BD2 2AD BD Сos 30; • AB2 = 36 + 27 2 6 33 3/2 • AB2 = 9, т.к. AB 0, то AB = 3 • Ответ: 3
Применение теорем в практической жизни: № 1036 Наблюдатель находится на расстоянии 50 км от башни, высоту которой хочет определить. Основание башни он видит по углом 2º к горизонту, а вершину – под углом 45º к горизонту. Какова высота башни? В Решение: 1 способ 1) AH BC 2) ∆ABH(BHA = 90º; BAH = 45º); AH = BH = 50 3) ∆ ADC( ADC = 90º); DAC = 90º − 2 = 88º Sin 88º = DC/AC; AC = DC/Sin 88º AC = 50/0,99; AC = 50,5 Cos 88º = AD/AC; AD = AC · Cos 88º AD = 1,74 4) BC =BH + HC; HC = AD = 1,74 BC = 50 + 1,74; BC = 51,74 = 52 м Ответ: 52 м 45º A 2º H D 50 C
В 45º A 2º H D 50 C Решение 2 способ • AH BC • 2) ∆ ADC( ADC = 90º); DAC = 90º − 2 = 88º • Sin 88º = DC/AC; AC = DC/Sin 88º • AC = 50/0,99; AC = 50,5 • 3) ∆ABC; ABC = 45º • по теореме синусов • AC/Sin 45º = BC/Sin 47º; • 50,5/0,707 = BC/0,731; BC = 50,5 · 0,731/0,707; • BC = 52,2 см • Ответ: 52 см 45º
Самостоятельная работа Вариант 1 • В треугольнике АВС b=0,3, А= 32º, В=70º. Найдите неизвестные элементы треугольника • В треугольнике АВС а=28, b=35, с=42. Найдите угол, лежащий против меньшей стороны Вариант 2 • В треугольнике АВС А=25º 30´, b=10,8, ВЕ ┴ АС, ВЕ=7,6. Найдите неизвестные элементы треугольника • В треугольнике АВС А=52º, В=70º. Радиус описанной около треугольника окружности равен 7. Найдите площадь треугольника. Вариант 3 • В треугольнике АВС a+b=21, А=64º, В=50º. Найдите неизвестные элементы треугольника • В треугольнике АВС ВС=3,4, АВС=130º. Площадь треугольника равна 3,6. Найдите АС. Ответы к самостоятельной работе Вариант 1. 1. а ≈ 0,17, с ≈ 0,31, С ≈ 78º. 2. ≈ 41º 25´ Вариант 2. 2. а ≈ 9,2, В ≈ 30º 21´, С ≈ 124º 9´. 2. ≈ 61,5 Вариант 3. 3. а ≈ 11,3, b=9,7, с ≈ 11,6, С ≈ 66º. 2. ≈ 5,6
Цели: • Закрепление знаний, умений и навыков по изученной теме, устранение пробелов. • Совершенствование навыков решения задач на применение теоремы о площади параллелограмма, теорем синусов и косинусов. • Показать применение теорем синусов и косинусов в решении практических задач. • 4) Развитие логического мышления и речи: умение логически обосновывать суждение, проводить систематизации, приводить примеры и контрпримеры. Задание на дом: 1060(а, в); 1037
Теорема синусов Стороны треугольника пропорциональны синусам противолежащих углов. C C b γ a a γ b β β A B A c B c a/sin=b/sin β =c/sin γ НАЗАД
C a γ b β A c B Доказательство Пусть в треугольнике АВС АВ = с, ВС = а, СА = b. Докажем, что По теореме о площади треугольника Из первых двух равенств получаем откуда Точно так же из второго и третьего равенств следует Итак, Теорема доказана НАЗАД
Следствие из теоремы синусов Достаточно доказать следующие положения: Проведем диаметр BG для описанной окружности. По свойству углов, вписанных в окружность, угол прямой и угол при вершине G треугольника равен либо α, если точки A и G лежат по одну сторону от прямой BC, либо π - α в противном случае. Поскольку sin(π - α) = sinα, в обоих случаях, a = 2Rsinα. Повторив тоже рассуждение для двух других сторон треугольника, получаем: НАЗАД
Соотношение между углами треугольника и противолежащими сторонами В треугольнике против большего угла лежит большая сторона, а против большей стороны лежит больший угол. C C a a b b β β A B A B Если > β, то a > b НАЗАД
C γ β B A Теорема косинусов Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. BC ² = AB ² + AC ² - 2AB AC cos α AC ² = AB ²+ BC ²- 2AB BC cos β НАЗАД
Доказательство 1).Рассмотрим треугольник ABC. Из вершины C на сторону AB опущена высота CD. Из треугольника ADC следует:AD = AC cos DB = AB – AC cos 2).Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC: Когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.Выражения для сторон AC и AB: AC = CB + AB – 2 CBAB cos β AB = CB + AC– 2 CB ACcos γ CD = AC – (AC cos ) (1) CD = CB – (AB - AC cos ) (2) 3).Приравниваем правые части уравнений (1) и (2) и: AC – (AC cos ) =CB – (AB – AC cos ) CB = AC + AB – 2AC AB cos НАЗАД
Следствие из теоремы косинусов Квадрат стороны треугольника равен сумме квадратов двух других сторон «±» удвоенное произведение одной из них на проекцию другой. Знак «+» нужно использовать, когда противолежащий угол тупой, а знак «-», когда угол острый. C C B A D D B A Угол -острый CD – высота AD – проекция стороны AC на сторону AB. cos = AD/AC AD = AC cos CD – высота AD – проекция стороны AC на продолжение стороны AB. cos (180 - ) = –cos cos (180 - ) = AD / AC = –cos AD= – AC cos НАЗАД BC ² = AB ² + AC ² – 2AB AD BC ² = AB ² + AC ² + 2AB AD