1 / 22

Gravity at Micron Hartmut Abele

Gravity at Micron Hartmut Abele. Galileo in Pisa. Objekt: Neutron H öhe : ~ 50 m m Fallh öhe > 50 m Fallh öhe < 50 m. QM. Hydrogen atom. QM: bei gebundenen Zuständen diskrete Energieniveaus Aufenthaltswahrscheinlichkeit: Quadrat der Wellenfunktion  n,l,m (r,,).

lotus
Download Presentation

Gravity at Micron Hartmut Abele

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gravity at MicronHartmut Abele

  2. Galileo in Pisa Objekt: Neutron Höhe: ~ 50 mm • Fallhöhe > 50m • Fallhöhe < 50m

  3. QM Hydrogen atom QM: bei gebundenen Zuständen diskrete Energieniveaus Aufenthaltswahrscheinlichkeit: Quadrat der Wellenfunktion n,l,m(r,,)

  4. Airy-Funktion Energie mgz Abstand vom Spiegel Gitarre Abstand vom Spiegel

  5. Rb Atoms Bouncing in a Stable Gravitatonial Cavity E. Hinds et al., Yale, Imperial College E. Hinds et al., Yale, Imperial College London

  6. The quantum bounce

  7. Quantum bounce

  8. Energy mgz Distance to Mirror Observation of Bound Quantum States T~h3/2 Neutron mirror: polished glass plate 10 cm long Nature 415 299 (2002), Phys. Rev. D 67 102002 (2003).

  9. Energy mgz Distance to Mirror Schrödinger Equation

  10. A comparison: Neutrons, Atoms and Electrons e+n- System 1013ly

  11. 2nd Run 2002 V. Nesvizhevsky et al., EPJ, 2005

  12. Reversed Geometry A. Westphal, 2001

  13. the Experiment • Neutron detection: • He – detector • n + 3He  t + p • (no spatial resolution) • Track detector • n + 235Ufission • n + 10B  Li + a

  14. 15 mm 120 mm X UCN neutrons Fission fragment ~0.2 How does the detector work? Uranium or Boron coating CR39 Plastic

  15. CR39 track detector Uranium Detector Boron Detector

  16. ~ 200µm ~ 10 cm

  17. Neutron Density Distributionwith Spatial Resolution Detector Y2 First three levels 10 20 30 40 50mm V. Nesvizhevsky et al., EPJ, 2005

  18. C. Krantz, Diploma thesis, 2006

  19. Bestimmung von g g = (9.8 ± 0.2) m/s2

  20. 3.2.2 Newton´s Law and the Question of Large Extra Dimension of Space and Time • Deviations from Newton's law 1/r2 to 1/r2+n, for n extra large dimensions. • Motivated by the problem of supersymmetry breaking, new scalar forces in the sub-millimeter range for a supersymmetry breaking scale of 1 – 10 TeV. These correspond to Compton wavelengths in the range of 1 mm to 10 mm. • Repulsive forces mediated by possible abelian gauge fields in the bulk. The strength of the new force would be 109 to 1012 times stronger than gravity. MPL MnPL

  21. Limits for alpha and lambda Green: Neutron Limits

  22. Kollaboration ILL Grenoble V. Nesvizhevsky, A. Petukhov, H. Boerner, L. Lukovac, S. Roccia LPI, Moscow A. Voronin Universität Heidelberg N. Haverkamp, C. Krantz, D. Mund, S.Nahrwold, F. Rueß, T. Stöferle PNPI, Gatchina A. Gagarsky, G. Petrov, S. Soloviev LPSC, Grenoble K. Protasov SISSA (Italien) A. Westphal JINR, Dubna A. Strelkov U. Mainz S. Baeßler Univ. Gent J. Schrauwen

More Related