350 likes | 458 Views
TOWARDS QUANTIZATION OF TURBULENCE BY EMMANUEL FLORATOS PHYSICS DEPARTMENT UNIVERSITY OF ATHENS WORK DONE IN COLLABORATION WITH MINOS AXENIDES INSTITUTE OF NUCLEAR PHYSICS DEMOKRITOS,ATHENS GGI WORKSHOP 3-10/10 FIRENZE . PLAN OF THE TALK
E N D
TOWARDS QUANTIZATION OFTURBULENCEBYEMMANUEL FLORATOSPHYSICS DEPARTMENT UNIVERSITY OF ATHENSWORK DONE IN COLLABORATION WITHMINOS AXENIDESINSTITUTE OF NUCLEAR PHYSICSDEMOKRITOS,ATHENSGGI WORKSHOP 3-10/10FIRENZE
PLAN OF THE TALK 1)TURBULENCE IN CLASSICAL AND QUANTUM FLUIDS-MOTIVATION (3-15) 2)THE SALTZMAN-LORENZ EQUATIONS FOR CONVECTIVE FLOW (16-17) 3)THE LORENZ STRANGE ATTRACTOR(18-19) 4)NAMBU DISSIPATIVE DYNAMICS (20-23) 5)MATRIX MODEL QUANTIZATION OF THE LORENZ ATTRACTOR (23-26) 6)CONCLUSIONS -OPEN QUESTIONS
TURBULENCE IN CLASSICAL AND QUANTUM FLUIDS-MOTIVATION • MOST FLUID FLOWS IN NATURE ARE • TURBULENT (ATMOSPHERE,SEA,RIVERS, • MAGNETOHYDRODYNAMIC PLASMAS IN IONIZED GASES,STARS,GALAXIES etc • THEY ARE COHERENT STRUCTURES WITH DIFFUSION OF VORTICITYFROM LARGE DOWN TO THE MICROSCOPIC SCALES OF THE ENERGY DISSIPATION MECHANISMS • KOLMOGOROV K41,K62 SCALING LAWS • LANDU-LIFSHITZ BOOK,1987 • HOLMES-LUMLEY BERKOOZ 1996
TURBULENCE IN QUANTUM FLUIDS AT VERY LOW TEMPERATURES HeIV VORTICES APPEAR (GROSS-PITAEVSKI) INTERACT BY SPLIT-JOIN CREATING MORE VORTICES AND VORTICITY INTERACTIONS CREATING VISCOUS EFFECTS AND TURBULENCE KOLMOGOROV SCALING LAWS HOLD FOR SOME SPECTRA BUT VELOCITY PDF AREN’T GAUSSIAN AND PRESSURE SPECTRA AREN’T KOLMOGOROV INTERESTING RECENT ACTIVITY VERONA MEETING,BARENGHI ‘S TALK 9/2009
RECENT INTEREST IN QUARK-GLUON FLUID PLASMA FOUND TO BE STRONGLY INTERACTING (RHIC EXP) HIRANO-HEINZ et al PLB 636(2006)299,.. ADS/CFT METHODS FROM FIRST PRINCIPLE CALCULATIONS OF TRANSPORT COEFFICIENTS ,A.STARINETS(THIS CONFERENCE) OR USING DIRECTLY QUANTUM COLOR HYDRODYNAMIC EQNS (QCHD) REBHAN,ROMATSCHKE,STRICKLAND PRL94,102303(2005) THERMALIZATION EFFECTS ARE IN GENERAL NOT SUFFICIENT TO DESTROY VORTICITY AND MAY BE TURBULENCE SIGNATURES ARE PRESENT COSMOLOGICAL IMPLICATIONS ALREADY CONSIDERED (10^-6 SEC,COSMIC TIME) Astro-phys 09065087,SHILD,GIBSON,NIEUWENHUISEN
Dynamics of Heavy Ion Collisions Time scale 10fm/c~10-23sec <<10-4(early universe) Temperature scale 100MeV~1012K Freezeout “Re-confinement” Expansion, cooling Thermalization First contact (two bunches of gluons)
History of the Universe ~ History of Matter QGP study Understanding early universe
RAYLEIGH-BENARD CONVECTIONTEMPERATURE GRADIENT ΔΤBOUSSINESQUE APPROXIMATION
THE SALTZMAN-LORENZ EQUATIONS FOR CONVECTIVE FLOW • x'[t]=σ (x[t]-y[t]), • y'[t]=-x[t] z[t]+r x[t]-y[t], • z'[t]=x[t] y[t]- b z[t] • 3 Fourier spatial modes of thermal convection for viscous fluid in external temperature gradient ΔΤ σ=η/ν =Prandl number, η=viscocity,v=thermal diffusivity R=Rc/R ,R Reynolds number =Ratio of Inertial forces to friction forces b=aspect ratio of the liquid container Standard values σ=10,r=28,b=8/3 E.N.Lorenz MIT,(1963) Saltzman(1962) ONSET OF TURBULENCE RUELLE ECKMAN POMEAU…1971,1987..
20 20 0 0 -20 -20 40 20 0 -20 -20 0 0 20 20
Lorenz attracting ellipsoid • E[x,y,z]=r x^2+σ y^2+(z-2r)^2 • d/dt E[x,y,z]=v.∂ E[x,y,z]= • -2 σ [r x^2+y^2+b (z-r)^2-b r^2] • <0 Outside the ellipsoid F • F: r x^2+y^2+b (z-r)^2=b r^2
Matrix Model Quantization of the Lorenz attractor=Interacting system of N-Lorenz attractors • X'[t]=σ (X[t]-Y[t]), • Y'[t]=-1/2(X[t]Z[t]+Z[t]X[t]) • +r X[t]-Y[t], • Z'[t]=1/2(X[t] Y[t]+Y[t] X[t])- bZ[t]
X[t],Y[t],Z[t] NxN Hermitian Matrices • When X,Y,Z diagonal (real)we have a system of N -decoupled Lorenz Non-linear oscillators • When the off-diagonal elements are small we have weakly coupled complex oscillators • When all elements are of the same order of magnitude we have strongly coupled complex • Ones. • Special cases X,Y,Z real symmetric
Matrix Lorenz ellipsoid • E[X,Y,Z]=Tr[r X^2+σ Y^2+(Z-2r)^2 • d/dt E[X,Y,Z]= • -2 σ Tr[r X^2+Y^2+b (Z-r)^2 • -b r^2 I] • <0 Outside the ellipsoid F • F: Tr[ r X^2+Y^2+b (Z-r)^2]=N b r^2 • Multidimensional attractor
CONCLUSIONS • Construction of Matrix Lorenz attractor with U[N] symmetry • Observables … Tr[X^k Y^l Z^m] • K,l,m=0,1,2,3,… • Initial phase of development of Ideas
Currently Development of the physical ideas through • Numerical work • Analytical work for weak coupling • 1/N expansion • Phenomenological applications
OPEN QUESTIONS • EXISTENCE OF MULTIDIMENSIONAL MATRIX LORENZ ATTRACTOR • HAUSDORFF DIMENSION • QUANTUM COHERENCE OR QUANTUM DECOHERENCE • N INTERACTING LORENZ ATTRACTORS • MATRIX MODEL PICTURE (D0 BRANES • ARE REPLACED BY LORENZ NONLINEAR SYSTEM)
PHYSICS APPLICATIONS • QUARK GLUON PLASMA • COSMOLOGY • QUANTUM FLUIDS • SCALING LAWS OF CORELLATION • FUNCTIONS