1 / 16

Preflare Features in Radios and in Hard X-Rays

Preflare Features in Radios and in Hard X-Rays. Ayumi ASAI Nobeyama Solar Radio Observatory, NAOJ collaborated with H. Nakajima, M. Shimojo, H. S. Hudson, R. P. Lin, and S. M. White AOGS 2 nd Annual Meeting, June 22, 2005. Energy Release in Preflare Phase. Impulsive phase:

louise
Download Presentation

Preflare Features in Radios and in Hard X-Rays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Preflare Features in Radios and in Hard X-Rays Ayumi ASAI Nobeyama Solar Radio Observatory, NAOJ collaborated with H. Nakajima, M. Shimojo, H. S. Hudson, R. P. Lin, and S. M. White AOGS 2nd Annual Meeting, June 22, 2005

  2. Energy Release in Preflare Phase Impulsive phase: Strong nonthermal emission in HXRs and in microwaves Fast reconnection, violent energy release Preflare phase: Gradual emission in SXRs, start of plasmoid ejection/CME destabilization of preflare structure Physical process in preflare phase has a key of flare trigger

  3. Nonthermal Emission Masuda et al. (1994) strong energy release  • HXR thick-target : footpoint thin-target : above loop top (nonthermal?/thermal?) • microwave flare loop particle acceleration in preflare phase? (Farnik et al. 2003) fast shock flare loop

  4. Observation NOAA 10039 Flare 2002/July/23 00:20 UT NOAA 10039 (SE limb) GOES X4.8 Light Curve SXR(GOES)、HXR(RHESSI)、 microwave(Nobeyama Radioheoigraph) Divide them into 4 sub-phases, and examine each of them

  5. (Phase 1) Before the Flare • Large loop-like structure (m-wave) • Thin-thermal emission (a~0) • Not clear in EUV  high temperature (~5MK)? • Like a sigmoid?

  6. (Phase 2) Preflare Phase I Rapid temperature increase (SXR, GOES):hotter than 10MK Low energy HXR emission thermal emission? 17GHz 12-25 keV

  7. (Phase 2) Preflare Phase II • Nonthermal emission (a~-3.0) • Above-the-loop-top source (Masuda’s source?)

  8. (Phase 3) Ejection slit • Faint EUV ejection • Associated CME • Induce intense energy release

  9. (Phase 4) Impulsive Phase • The physical features are almost the same as in the impulsive phase • HXR Footpoint (nonthermal) Above-the-loop-top (thermal?/nonthermal?) • microwave Loop / loop top (nonthermal) Above-the-loop-top source? Masuda et al. (1994)

  10. Ejections and Energy Release • Destabilization of the structure (tether-cutting / breakout) • Plasmoids/filaments start to rise Induce strong energy release (impulsive phase) • Nonthermal emission even in the phase BEFORE the ejection Destabilization process is accompanied by particle acceleration HXR time

  11. Summary • We examined the preflare features of 2002 July 23 flare in HXRs and in microwave • Faint EUV ejection at 00:24UT Induced fast energy release in the impulsive phase • We found the thermal and nonthermal features even in the phase before the ejection • Nonthermal emission @ footpoin and above the loop top • Masuda’s HXR sources? Energy release mechanism in the preflare phase is probably accompanied by particle acceleration

  12. ようこうで探るプリフレア現象 Farnik (1996) リム付近で発生したフレアの統計解析 41/131(~31%)イベントでプリフレア エネルギー解放の場所は上空か? 優位な差は見られず gray scale: preflare

  13. ようこうで探るプリフレア現象 Farnik and Savy (1998) プリフレア相増光の領域の一部は、フレアループと重なっている事が多い。 しかし、2つの領域が完全に一致する物は少ない gray scale: preflare contour: flare GOESでフレアと認識されなくてもプリフレア現象が起きている場合あり!

  14. Tether-Cutting Model Moore et al. (2001) ApJ 強くシアした磁力線 足元付近で磁気リコネクションすることにより、磁力線の支え(tether)を切る(cutting) 不安定になり、上部(filament)が上昇、CMEに

  15. Temperature Variation in Preflare Phase Shimojo (1999) Date:20-Sep-1997 09:30UT Blue con. : 4MK Green con. : 5MK Red con. : 6MK SXT Image 09:20:37UT 09:09:09UT Temp. Map 09:27:01UT 09:30:31UT 09:32:35UT

More Related