490 likes | 557 Views
Explore the significant contributions of renowned scientists such as Harvey, Malpighi, and Bernoulli to cardiovascular physiology. Understand the principles of blood circulation, pressure dynamics, and fluid mechanics in the circulatory system. Learn about key functions of the cardiovascular system and the organization of the vascular network.
E N D
FISIOLOGIA CARDIOVASCULAR Robson A. S. Santos
HEMODINÂMICA DA CIRCULAÇÃO PERIFÉRICA
In 1627, William Harvey was able to confirm his observation that the blood circulates throughout the body, which he inferred from the structure of the venal valves. The following year, in Exercitatio Anatomica, he published these conclusions as well as a description of the heart as a mechanical pump In 1651, Harvey published the concept that all living things originate from eggs. Harvey believed that in principle organisms could be spontaneously generated, and that the process was one of the self-generation of a complicated machine. In 1661, Marcello Malpighi, in De pulmonibus, reported his observation of blood movement through the capillaries. He is also noted for his studied of the glands. In 1733, Hales measured blood pressure. In 1738, Daniel Bernoulli, in Hydrodynamica, asserted the principle that as the speed of a moving fluid increases, the pressure within the fluid decreases. In the process of determining this, he invented the 'molecular theory of gases,' now known as the 'kinetic theory of gases,' which introduced the notion that the gas particles were moving around rapidly and that a gas's temperature is a function of the average speed of its particles.
PRINCIPAIS FUNÇÕES DO SISTEMA CIRCULATÓRIO • Transporte e distribuição de substâncias essenciais para os tecidos. • Remoção de produtos do metabolismo. • Ajustar o suprimento de oxigênio e nutrientes em diferentes estados fisiológicos • Regulação da temperatura corporal • Comunicação humoral
O CIRCUÍTO TÚBULOS BOMBA COLETORES TÚBULOS VASOS DE TROCA DISTRIBUIDORES
Pressure Drop in the Vascular System ELASTIC TISSUE MUSCLE LARGEARTERIES SMALLARTERIES MEANPRESSURE ARTERIOLES CAPILLARIES VENULES &VEINS LARGE SMALL LARGE INSIDE DIAMETER
Distribuição do Sangue no Sistema Circulatorio • 67% VEIAS SIST. /VENULAS • 5% CAPILARES SISTÊMICOS • 11% ARTÉRIAS SISTÊMICAS • 5% VEIAS PULMONARES • 3% ARTÉRIAS PULMONARES • 4% CAPILARES PULMONARES • 5% ÁTRIOS/VENTRICULOS
Organização do Sistema Circulatório CIRCUITOS EM SÉRIE E EM PARALELO
HEMODINÂMICA • VELOCIDADE,FLUXO,PRESSÃO • FLUXO LAMINAR • LEI DE POISEUILLE • RESISTÊNCIA(SERIE-PARALELO) • FLUXO TURBILHONAR E NÚMERO DE REYNOLD
PRESSÃO HIDROSTÁTICA 100 136cm 0 200 100 0 200 P = p x g x h 0 100mmHg 100 136cm 0 200 P = Pressão mmHg p = densidade g = gravidade h = altura 100 0 200 0
CONCEITOS IMPORTANTES VELOCIDADE = DISTÂNCIA / TEMPO V = D / T FLUXO = VOLUME / TEMPO Q = VL / T VELOCIDADE -FLUXO- ÁREA V = Q / A
ENERGIA DE UM FLUÍDO ESTÁTICO VS EM MOVIMENTO ENERGIA TOTAL= POTENTIAL + CINÉTICA ET = EP + EC FLUÍDO EM REPOUSO (HIDROSTÁTICA ) FLUÍDO EM MOVIMENTO (HYDROSTÁTICA + HIDRODINÂMICA)
VELOCIDADE E PRESSÃO 100 0 200 0
ÁREA DE SECÇÃO TRANSVERSAL E VELOCIDADE A= 2cm2 10cm2 1cm2 Q=10ml/s a b c V= 5cm/s 1cm/s 10cm/s V = Q / A
LEI DE POISEUILLEFluxo em Tubos Cilíndricos Rigídos (Pi - Po) r 4 • (FLUXO)Q = 8ηL DIFERENÇA DE PRESSÃO VISCOSIDADE COMPRIMENTO RAIO
POISEUILLE’S LAW GOVERNING FLUID FLOW(Q) THROUGH CYLINDRIC TUBES
RESISTÊNCIA AO FLUXO NO SISTEMA CARDIOVASCULAR CONCEITOS BÁSICOS Rt = R1 + R2 + R3…………. RESISTÊNCIAS EM SÉRIE 1/Rt = 1/R1 + 1/R2 + 1/R3…. RESISTÊNCIAS EM PARALELO R1 PARALELO SÉRIE R2 R1 R2 R3 R3
RESISTÊNCIA AO FLUXO NO SISTEMA CARDIOVASCULAR O QUE REALMENTE OCORRE NO SCV? BAIXA R ALTA R BAIXA R ARTÉRIAS ARTERÍOLAS CAPILARES
Teorema de Bernoulli para umfluxo constante em um leito fechado. A soma da Energia de Pressão, Energia Cinética e Energia Potencial em um determinado ponto do leito vascular é igual a soma dessas Energias em um outro ponto do mesmo leito vascular.
FLUXO LAMINAR VS FLUXO TURBILHONARO Número de REYNOLD FLUXO LAMINAR FLUXO TURBILHONAR p = densidade D = diâmetro v = velocidade n = viscosidade Nr = pDv/ n laminar = 2000 ou inferior
SISTEMA ARTERIAL • COMPLACÊNCIA • PRESSÃO ARTERIAL • PRESSÃO DE PULSO • MEDIDA DE PRESSÃO
THE CONCEPT OF THE HYDRAULIC FILTER SYSTOLE DIASTOLE COMPLIANT RIGID
EFFECTS OF PUMPING THROUGH A RIGID VS A COMPLIANT DUCT 0.1 PLASTIC TUBING O2 CONSUMPTION (mlO2/100g/beat) NATIVE AORTA 0 5 15 STROKE VOLUME (ml)
STATIC P-V RELATIONSHIP IN THE AORTA % INCREASE IN VOLUME PRESSURE (mmHg)
ELASTIC MODULUS OR ELASTANCE Ep= ELASTIC MODULUS D= MAX. CHANGE IN AORTIC DIAMETER. D= MEAN AORTIC DIAM. Ep = P / D/D ELASTANCE COMPLIANCE P V V P EP IS INVERSELY PROPORTIONAL TO C
MEAN ARTERIAL PRESSURE (MAP) REMEMBER OHMS LAW? CARDIAC OUTPUT PERIPHERAL RESISTANCE INSTANTANEOUS INCREASE STEADY STATE INCREASE
EFFECT OF COMPLIANCE ON MAP Qh- inflow (CO) Qr- outflow Ca- Compliance Pa- MAP Pa = Qh - Qr / Ca SMALL Ca ARTERIAL PRESSURE (mmHg) LARGE Ca INCREASE CARDIAC OUTPUT TIME
PULSE PRESSURE STROKE VOLUME COMPLIANCE V4 VB VOLUME V3 V2 VA V1 P1 PA P2 P3 PB P4 PRESSURE
PULSE PRESSURE EFFECTS OF: TOTAL PERIPHERAL RESISTANCE COMPLIANCE TPR
COUPLING OF THE HEART AND BLOOD VESSELS VASCULAR FUNCTION CURVE HOW CARDIAC OUTPUT REGULATES CENTRAL VENOUS PRESSURE CARDIAC FUNCTION CURVE HOW CENTRAL VENOUS PRESSURE (PRELOAD) REGULATES CARDIAC OUTPUT
VASCULAR FUNCTION CURVE HOW CHANGES IN CARDIAC OUTPUT INDUCE CHANGES IN CENTRAL VENOUS PRESSURE? 8 Pmc VASCULAR FUNCTION CURVE B CENTRAL VENOUR PRESSURE (mmHg) A -1 0 8 CARDIAC OUTPUT (L/min)
HOW BLOOD VOLUME AND VENOMOTOR TONE CHANGE THE VASCULAR FUNCTION CURVE? 8 VASCULAR FUNCTION CURVE TRANSFUSION CENTRAL VENOUR PRESSURE (mmHg) NORMAL HEMORRHAGE -1 0 8 CARDIAC OUTPUT (L/min)
TOTAL PERIPHERAL RESISTANCE AND THE VASCULAR FUNCTION CURVE. 8 VASCULAR FUNCTION CURVE CENTRAL VENOUR PRESSURE (mmHg) VASODILATION VASOCONSTRICTION NORMAL -1 0 8 CARDIAC OUTPUT (L/min)
THE CARDIAC FUNCTION CURVE CARDIAC OUTPUT (L/min) CENTRAL VENOUS PRESSURE (mmHg)
EFFECTS OF SYMPATHETIC STIMULATION ON THE CARDIAC FUNCTION CURVE CARDIAC OUTPUT (L/min) CENTRAL VENOUS PRESSURE (mmHg)
HOW BLOOD VOLUME AND PERIPHERAL RESISTANCE CHANGE THE CARDIAC FUNCTION CURVE? VOLUME RESISTANCE CARDIAC OUTPUT (L/min) CENTRAL VENOUS PRESSURE (mmHg)
THE CARDIAC FUNCTION CURVE IN HEART FAILURE CARDIAC OUTPUT (L/min) CENTRAL VENOUS PRESSURE (mmHg)
HEART - BLOOD VESSELSCOUPLING MORMAL FUNCTION PUMP ARTERIES VEINS Qh 5L/min Pa COMPLIANCES Cv = 19Ca Cv>>>>Ca MPA=102mmHg CPV=2mmHg=Pv 5L/min Qr PERIPHERAL R= Pa - Pv / Qr R = 20mmHg/L/min
CARDIAC ARREST!INMEDIATE EFFECT FLOW STOPS HERE PUMP ARTERIES VEINS Qh 0L/min Pa FLOW CONTINUES HRE TRANSFER ART-->VEINS CPV=2mmHg=Pv 5L/min Qr Qr CONTINUES AS LONG AS A PRESSURE GRADIENT IS SUSTAINED R = 20mmHg/L/min Qr= Pa - Pv/20
CARDIAC ARRESTSTEADY STATE FLOW STOPPED PUMP ARTERIES VEINS Qh 0L/min Pa = 7mmHg Pv = 7mmHg = MEAN CIRCULATORY PRESSURE OR Pmc 95mmHg FLOW STOPPED 5mmHg 0L/min Qr Qr = 0 ( NO Pa - Pv DIFFERENCE)
WE START PUMPING!INMEDIATE EFFECT FLOW STARTS SOME VENOUS BLOOD PUMP ARTERIES VEINS Qh 1L/min Pa = 7mmHg Pv = 7mmHg NO FLOW HERE YET 0L/min Qr
FLOW RETURNS AT Qr AT THE NEW Qh PUMP ARTERIES VEINS Qh 1L/min Pa = 26mmHg Pv = 6mmHg FLOW STARTS 1L/min Qr R = 20mmHg Qr = Pa - Pv / 20 = 1L/min