760 likes | 1.34k Views
“From Planarity to Chirality ” The research work of Gregory C. Fu by Maude Poirier October 2 nd , 2007. Gregory C. Fu. 1963 Born in Galion, Ohio 1984-1985 Researcher with Professor K. Barry Sharpless MIT 1985-1991 Graduate student with Professor David A. Evans Harvard University
E N D
“From Planarity to Chirality”The research work of Gregory C. FubyMaude PoirierOctober 2nd, 2007
Gregory C. Fu • 1963 Born in Galion, Ohio • 1984-1985 Researcher with Professor K. Barry Sharpless MIT • 1985-1991Graduate student with Professor David A. Evans Harvard University • 1991-1993 Postdoctoral fellow with Professor Robert H. Grubbs CALTECH • 1993-1996 Assistant Professor of Chemistry MIT • 1996-1998 Firmenich Assistant Professor of Chemistry MIT • 1998-1999 Firmenich Associate Professor of Chemistry MIT • 1999-present Professor of Chemistry MIT
Gregory C. Fu • 1963 Born in Galion, Ohio • 1984-1985 Researcher with Professor K. Barry Sharpless MIT • 1985-1991Graduate student with Professor David A. Evans Harvard University • 1991-1993 Postdoctoral fellow with Professor Robert H. Grubbs CALTECH • 1993-1996 Assistant Professor of Chemistry MIT • 1996-1998 Firmenich Assistant Professor of Chemistry MIT • 1998-1999 Firmenich Associate Professor of Chemistry MIT • 1999-present Professor of Chemistry MIT
Gregory C. Fu • 2007 Fellow, American Academy of Arts and Sciences • 2007 Catalysis Science Award, Mitsui Chemicals • 2006 Mukaiyama Award, Society of Synthetic Organic Chemistry of Japan • 2005 Fellow, Royal Society of Chemistry • 2004 Corey Award, American Chemical Society • 2001 Springer Award in Organometallic Chemistry • 2000 School of Science Undergraduate Teaching Prize, Massachusetts Institute of Technology • 2000 Chan Memorial Award in Organic Chemistry • 1999 Innovation Recognition Award, Union Carbide • 1998 Bristol-Myers Squibb Award • 1998 Cope Scholar Award, American Chemical Society • 1998 Synthetic Organic Chemistry Award, Pfizer • 1997 Camille Dreyfus Teacher-Scholar Award • 1997 Alfred P. Sloan Research Fellow • 1997 Chemistry Scholar Award, Glaxo Wellcome • 1996 Lilly Grantee Award, Eli Lilly • 1996 Cottrell Scholar Award, Research Corporation • 1995 American Cancer SocietyJunior Faculty Research Award • 1994 National Science FoundationYoung Investigator Award • 1993 Camille and Henry Dreyfus FoundationNew Faculty Award
What is planar chirality ? • Chirality in molecules devoid of chiral centers 1) For the synthesis of cyclophanes see: S. K. Collins, Y. El-Azizi, Pure App. Chem.2006, 78, 783-789. S. K. Collins, Y. El Azizi, A. Schmitzer, Angew. Chem. Int. Ed.2006, 45, 968-973. 2) E. M. Brzostowska, M. Paulynice, R. Bentley, A. Greer, Chem. Res. Toxicol.2007, 20, 1046-1052.
What is planar chirality ? • Chirality in molecules devoid of chiral centers 1) For the synthesis of cyclophanes see: S. K. Collins, Y. El-Azizi, Pure App. Chem.2006, 78, 783-789. S. K. Collins, Y. El Azizi, A. Schmitzer, Angew. Chem. Int. Ed.2006, 45, 968-973. 2) E. M. Brzostowska, M. Paulynice, R. Bentley, A. Greer, Chem. Res. Toxicol.2007, 20, 1046-1052.
What is planar chirality ? • Chirality in molecules devoid of chiral centers 1) For the synthesis of cyclophanes see: S. K. Collins, Y. El-Azizi, Pure App. Chem.2006, 78, 783-789. S. K. Collins, Y. El Azizi, A. Schmitzer, Angew. Chem. Int. Ed.2006, 45, 968-973. 2) E. M. Brzostowska, M. Paulynice, R. Bentley, A. Greer, Chem. Res. Toxicol.2007, 20, 1046-1052.
What is planar chirality ? • Chirality in molecules devoid of chiral centers 1) For the synthesis of cyclophanes see: S. K. Collins, Y. El-Azizi, Pure App. Chem.2006, 78, 783-789. S. K. Collins, Y. El Azizi, A. Schmitzer, Angew. Chem. Int. Ed.2006, 45, 968-973. 2) E. M. Brzostowska, M. Paulynice, R. Bentley, A. Greer, Chem. Res. Toxicol.2007, 20, 1046-1052.
Nucleophilic catalyst development G. C. Fu, Acc. Chem. Res, 2000, 33, 412-420.
Nucleophilic catalyst development • Should be electron rich, enhancing the nucleophilicity of the catalyst • It’s steric environment should be tunable • Should lead to robust planar-chiral complexes for maximum versatility and for ease of handling G. C. Fu, Acc. Chem. Res, 2000, 33, 412-420.
Planar-Chiral nucleophilic catalyst synthesis G. C. Fu, Acc. Chem. Res, 2000, 33, 412-420. J. C. Ruble, G. C. Fu, J. Org. Chem. 1996, 61, 7230-7231.
Kinetic resolution, basic principles • Enantiomers react at different rates with other chiral compounds • The more theses rates are fart appart the better is • Selectivity factor s : k( fast-reacting enantiomer ) k( slow-reacting enantiomer ) ^ S = 10 For a review on kinetic resolution, see: H. B. Kagan, J. C. Flaud, Top. Stereochemi. 1988, 18, 249-330.
Kinetic resolution, basic principles DG Rxn coordinates
Kinetic Resolution of Secondary Alcohols • J. C. Ruble, H. A. Latham, G. C. Fu, J. Am. Chem. Soc.1997, 119, 1492-1493. • J. C. Ruble, J. Tweddell, G. C. Fu, J. Org. Chem.1998, 63, 2794-2795. • B. Tao, J. C. Ruble, D. A. Holc, G. C. Fu, J. Am. Chem. Soc,1999, 121, 5091-5092.
Kinetic Resolution of Secondary Alcohols G. C. Fu, Acc. Chem. Res. 2000, 33, 412-420.
Synthesis of Kagan’s ether analogue 1) M. Harmata, M. Kahraman, J. Org. Chem. 1999, 64, 4949-4952.
Kinetic Resolution of Allylic Alcohols • J. C. Ruble, J. Tweddell, G. C. Fu, J. Org. Chem. 1998, 63, 2794-2795. • S. Bellemen-Laponnaz, J. Tweddell, J. C. Ruble, F. M. Breitling, G. C. Fu, Chem. Commun. 2000, 1009-1010.
Epothilone A synthesis 1) S. Bellemen-Laponnaz, J. Tweddell, J. C. Ruble, F. M. Breitling, G. C. Fu, Chem. Commun. 2000, 1009-1010. 2) For the synthesis of Epothilone A, see: S. C. Sinha, C. F. Barbas, III and R. A. Lerner, Proc. Natl. Acad. Sci. USA,1998, 95, 14603.
Epothilone A synthesis 1) S. Bellemen-Laponnaz, J. Tweddell, J. C. Ruble, F. M. Breitling, G. C. Fu, Chem. Commun. 2000, 1009-1010. 2) For the synthesis of Epothilone A, see: S. C. Sinha, C. F. Barbas, III and R. A. Lerner, Proc. Natl. Acad. Sci. USA,1998, 95, 14603.
Kinetic Resolution of Secondary Amines 1) S. Arai, S. Bellemin-Laponnaz, G. C. Fu, Angew. Chem. Int. Ed. 2001, 40, 234-236.
Asymmetric nucleophilic catalysist: Planar-chiral heterocycles B. L. Hodous, J. C. Ruble, G. C. Fu, J. Am. Chem. Soc.1999, 121, 2637-2638.
Asymmetric nucleophilic catalysist: Planar-chiral heterocycles B. L. Hodous, J. C. Ruble, G. C. Fu, J. Am. Chem. Soc.1999, 121, 2637-2638.
Asymmetric nucleophilic catalysist: Planar-chiral heterocycles B. L. Hodous, J. C. Ruble, G. C. Fu, J. Am. Chem. Soc.1999, 121, 2637-2638.
Asymmetric nucleophilic catalysist: Planar-chiral heterocycles B. L. Hodous, J. C. Ruble, G. C. Fu, J. Am. Chem. Soc.1999, 121, 2637-2638.
Asymmetric Staudinger synthesis of b-lactams 1) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc.2002, 124, 1578-1579. 2) E. C. Lee, B. L. Hodous, E. Bergin, C. Shih, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11586-11587.
Asymmetric Staudinger synthesis of b-lactams 1) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc.2002, 124, 1578-1579. 2) E. C. Lee, B. L. Hodous, E. Bergin, C. Shih, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11586-11587.
Asymmetric Staudinger synthesis of b-lactams 1) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc.2002, 124, 1578-1579. 2) E. C. Lee, B. L. Hodous, E. Bergin, C. Shih, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11586-11587.
Building quaternary centers Steglich rearrangement 1) W. Steglich, G. Hofle, Tetrahedron Lett. 1970, 4727-4730. 2) For a review of asymmetric synthesis of quaternary stereocenter, see: E. J. Corey, A. Guzman-Perez, Angew. Chem. Int. Ed. 1998, 37, 388-401. 3) For an overview on the synthesis and significance of a-alkylated a-amino acids, see: T. Wirth, Angew. Chem. Int. Ed. 1997, 36, 225-227.
Rearrangement of O-Acylation azlactone 1) J. C. Ruble, G. C. Fu, J. Am. Chem. Soc. 1998, 120, 11532-11533. 2) J. C. Ruble, J. Tweddell, G. C. Fu, J. Org. Chem, 1998, 63, 3154-3155.
Rearrangement of O-Acylation azlactone 1) J. C. Ruble, G. C. Fu, J. Am. Chem. Soc. 1998, 120, 11532-11533. 2) J. C. Ruble, J. Tweddell, G. C. Fu, J. Org. Chem, 1998, 63, 3154-3155.
Building quaternary centers: synthesis of oxindoles and benzofuranones I. D. Hills, G. C. Fu, Angew.Chem. Int. Ed. 2003, 42, 3921-3924.
Building quaternary centers: synthesis of oxindoles and benzofuranones I. D. Hills, G. C. Fu, Angew.Chem. Int. Ed. 2003, 42, 3921-3924.
Building quaternary centers: synthesis of oxindoles and benzofuranones I. D. Hills, G. C. Fu, Angew.Chem. Int. Ed. 2003, 42, 3921-3924.
Building quaternary centers: synthesis of b-ketoesters A. H. Mermerian, G. C. Fu, J. Am. Chem. Soc.2005, 127, 5604-5607.
Building quaternary centers: synthesis of b-ketoesters A. H. Mermerian, G. C. Fu, J. Am. Chem. Soc.2005, 127, 5604-5607.
Building quaternary centers: synthesis of b-ketoesters Mechanistic studies A. H. Mermerian, G. C. Fu, J. Am. Chem. Soc.2005, 127, 5604-5607.
Building quaternary centers: synthesis of b-ketoesters Mechanistic studies A. H. Mermerian, G. C. Fu, J. Am. Chem. Soc.2005, 127, 5604-5607.
Building quaternary centers: synthesis of b-ketoesters Mechanistic studies A. H. Mermerian, G. C. Fu, J. Am. Chem. Soc.2005, 127, 5604-5607.
Building quaternary centers: synthesis of b-ketoesters Mechanistic studies A. H. Mermerian, G. C. Fu, J. Am. Chem. Soc.2005, 127, 5604-5607.
Planar-chiral Brønsted Acid catalyst B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 10006-10007.
Planar-chiral Brønsted Acid catalyst B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 10006-10007.
Planar-chiral Brønsted Acid catalyst B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 10006-10007.
Planar-chiral Brønsted Acid catalyst • Support for a Brønsted-acid mechanism: • Treatment of the nucleophiles result in protonation of the catalyst and formation of an ion pair. • The reaction rate has 1st order dependence on ketene and catalyst and zero-order dependence on the nucleophile KIE of 5 has been measured for the addition of 1-D-2-cyanopyrrole to ketenes. • The ee of the product is inversely proportional to the concentration of the reaction. • Stereochemical outcome of the reaction can be explained by this pathway. G. C. Fu, Acc. Chem. Res. 2004, 37, 542-547.
Planar-chiral Brønsted Acid catalyst • Support for a Brønsted-acid mechanism: • Treatment of the nucleophiles result in protonation of the catalyst and formation of an ion pair. • The reaction rate has 1st order dependence on ketene and catalyst and zero-order dependence on the nucleophile KIE of 5 has been measured for the addition of 1-D-2-cyanopyrrole to ketenes. • The ee of the product is inversely proportional to the concentration of the reaction. • Stereochemical outcome of the reaction can be explained by this pathway. G. C. Fu, Acc. Chem. Res. 2004, 37, 542-547.
Planar-chiral Brønsted Acid catalyst • Support for a Brønsted-acid mechanism: • Treatment of the nucleophiles result in protonation of the catalyst and formation of an ion pair. • The reaction rate has 1st order dependence on ketene and catalyst and zero-order dependence on the nucleophile KIE of 5 has been measured for the addition of 1-D-2-cyanopyrrole to ketenes. • The ee of the product is inversely proportional to the concentration of the reaction. • Stereochemical outcome of the reaction can be explained by this pathway. G. C. Fu, Acc. Chem. Res. 2004, 37, 542-547.
Planar-chiral Brønsted Acid catalyst • Support for a Brønsted-acid mechanism: • Treatment of the nucleophiles result in protonation of the catalyst and formation of an ion pair. • The reaction rate has 1st order dependence on ketene and catalyst and zero-order dependence on the nucleophile KIE of 5 has been measured for the addition of 1-D-2-cyanopyrrole to ketenes. • The ee of the product is inversely proportional to the concentration of the reaction. • Stereochemical outcome of the reaction can be explained by this pathway. G. C. Fu, Acc. Chem. Res. 2004, 37, 542-547.
Planar-chiral Brønsted Acid catalyst S. L. Wiskur, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 6176-6177.
Planar-chiral Brønsted Acid catalyst K. Dai, T. Nakai, J. A. C. Romero, G. C. Fu, Angew. Chem. Int. Ed. 2007, 46, 4367-4369.
Planar-chiral Brønsted Acid catalyst K. Dai, T. Nakai, J. A. C. Romero, G. C. Fu, Angew. Chem. Int. Ed. 2007, 46, 4367-4369.
Planar-chiral Brønsted Acid catalyst K. Dai, T. Nakai, J. A. C. Romero, G. C. Fu, Angew. Chem. Int. Ed. 2007, 46, 4367-4369.