1 / 6

Deltoid

Deltoid. Deltoid – czworokąt, którego jedna z przekątnych leży na jego osi symetrii. Oś ta jest wówczas symetralną drugiej przekątnej. W takim czworokącie pewne dwa sąsiednie boki mają równą długość , a pozostałe dwa boki mają także równą długość .

loyal
Download Presentation

Deltoid

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Deltoid

  2. Deltoid – czworokąt, którego jedna z przekątnych leży na jego osi symetrii. Oś ta jest wówczas symetralną drugiej przekątnej. W takim czworokącie pewne dwa sąsiednie boki mają równą długość , a pozostałe dwa boki mają także równą długość . • Niektórzy autorzy żądają też, aby deltoid był wypukły. Według niektórych, np. Jana Zydlera deltoid dodatkowo nie może mieć wszystkich boków równych. Większość źródeł nie tworzy jednak takich wyjątków i uważa romb za szczególny przypadek deltoidu. • W deltoidzie kąty między bokami różnej długości są równe. Każdy deltoid wypukły jest sumą (mnogościową) dwóch trójkątów równoramiennych. • Pole powierzchni deltoidu jest połową iloczynu długości jego przekątnych. Jest także równe iloczynowi długości dwóch sąsiednich boków deltoidu o różnych długościach i sinusa kąta między nimi.

  3. Obwód L = 2a + 2b gdzie: a-oznacza długość boków krótszych, tj. długość boków AB i AD b- oznacza długość boków dłuższych, tj. długość boków BC i DC • Pole powierzchni P=(d1· d2) : 2 gdzie: P-pole powierzchni d1 – oznacza długość krótszej przekątnej d2 – oznacza długość dłuższej przekątnej Lub Pole powierzchni P = a · b · sinα gdzie: P-pole powierzchni a,b - długość dwóch sąsiednich boków deltoidu o różnych długościach i sinusa kąta zawartego między tymi bokami

  4. Reasumując: Deltoid ( inaczej "latawiec" ) to czworokąt, który ma oś symetrii przechodzącą przez dwa jego wierzchołki. Równoważnym warunkiem jest istnienie dwóch par przylegających boków o równych długościach. Przekątne deltoidu są wzajemnie prostopadłe – szczególnymi przypadkami deltoidu są romb oraz kwadrat. Deltoid ma parę przeciwległych kątów równych.

  5. Pracę wykonali: • Aleksander Pszczółkowski IB • Paweł Porosa IB

More Related