1 / 15

Quantum Certificate Complexity

Quantum Certificate Complexity. Scott Aaronson UC Berkeley.

lragusa
Download Presentation

Quantum Certificate Complexity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum Certificate Complexity Scott Aaronson UC Berkeley

  2. 0-1-NPC - #L - #L/poly - #P - #W[t] - +EXP - +L - +L/poly - +P - +SAC1 - A0PP - AC - AC0 - AC0[m] - ACC0 - AH - AL – AlgP/poly - AM - AM intersect coAM - AmpMP - AP - AP - APP - APP - APX - AVBPP - AvE - AvP - AW[P] - AWPP - AW[SAT] - AW[*] - AW[t] - βP - BH - BPE - BPEE - BPHSPACE(f(n)) - BPL - BPPKT - BPP-OBDD - BPPpath - BPQP - BPSPACE(f(n)) - BPTIME(f(n)) - BQNC - BQNP - BQP-OBDD - BQP/log - BQP/qlog - BQTIME(f(n)) - k-BWBP - C=L - C=P - CFL - CLOG - CH - Check - CkP - CNP - coAM - coC=P - cofrIP - Coh - coMA - coModkP - compIP - compNP -coNE - coNEXP - coNL - coNP - coNP/poly - coRE - coRNC - coRP - coUCC - CP - CSIZE(f(n)) - CSL - CZK - D#P - Δ2P - δ-BPP - δ-RP - DET - DisNP - DistNP - DP - DSPACE(f(n)) - DTIME(f(n)) - Dyn-FO - Dyn-ThC0 - E - EE - EEE - EESPACE - EEXP - EH - ELEMENTARY - ELkP - EPTAS - k-EQBP - EQP - EQTIME(f(n)) - ESPACE - EXP - EXP/poly - EXPSPACE - Few - FewP - FNL - FNL/poly - FNP - FO(t(n)) - FOLL – FPNP[log] - FPR - FPRAS - FPT - FPTnu - FPTsu - FPTAS - FQMA - frIP - F-TAPE(f(n)) - F-TIME(f(n)) - GapL - GapP - GC(s(n),C) - GPCD(r(n),q(n)) - G[t] - HkP - HVSZK - IC[log,poly] - IP - L - LIN - LkP - LOGCFL - LogFew - LogFewNL - LOGNP - LOGSNP - L/poly - LWPP - MA - MA’ - MAC0 - MA-E - MA-EXP - mAL - MaxNP - MaxPB - MaxSNP - MaxSNP0 - mcoNL - MinPB - MIP - MIPEXP - (Mk)P - mL - mNC1 - mNL - mNP - ModkL - ModkP - ModP - ModZkL - mP - MP - MPC - mP/poly - mTC0 - NC - NC0 - NC1 - NC2 - NE - NEE - NEEE - NEEXP - NEXP - NIQSZK - NISZK - NISZKh - NL - NLIN - NLOG - NL/poly - NPC - NPC - NPI - NP intersect coNP - (NP intersect coNP)/poly - NPMV - NPMV-sel - NPMVt - NPMVt-sel - NPO - NPOPB - NP/poly - (NP,P-samplable) - NPR - NPSPACE - NPSV - NPSV-sel - NPSVt - NPSVt-sel - NQP - NSPACE(f(n)) - NT - NTIME(f(n)) - OCQ - OptP - P#P - P#P[1] - PBP - k-PBP - PC - PCD(r(n),q(n)) - P-close - PCP(r(n),q(n)) - PEXP - PF - PFCHK(t(n)) - Φ2P - PhP - Π2P - PK - PKC - PL - PL1 - PLinfinity - PLF - PLL - P/log - PNP - PNP[k] - PNP[log] - P-OBDD - PODN - polyL - PP - PPA - PPAD - PPADS - P/poly - PPP - PQUERY - PR - PR - PrHSPACE(f(n)) - PromiseBPP - PromiseBQP - PromiseP - PromiseRP - PrSPACE(f(n)) - P-Sel - PSK - PT1 - PTAPE - PTAS - PT/WK(f(n),g(n)) - PZK - QAC0 - QAC0[m] - QACC0 - QAM - QCFL - QH - QIP - QIP(2) - QMA+ - QMA(2) - QMAlog - QMAM - QMIP - QMIPle - QMIPne - QNC0 - QNCf0 - QNC1 - QP - QPSPACE - QSZK - R - RE - REG - RevSPACE(f(n)) - RHL - RL - RNC - RPP - RSPACE(f(n)) - S2P - SAC - SAC0 - SAC1 - SBP - SC - SEH - SFk - Σ2P - SKC - SL - SLICEWISE PSPACE - SNP - SO-E - SP - span-P - SPARSE - SPL - SPP - SUBEXP - symP - SZK - SZKh - TALLY - TC0 - Θ2P - TREE-REGULAR - UCC - UL - UL/poly - UP - US - VNCk - VNPk - VPk - VQPk - W[1] - WAPP - W[P] - WPP - W[SAT] - W[*] - W[t] - W*[t] - XP - XPuniform - YACC - ZPE - ZPP SHAMELESS PLUG http://www.cs.berkeley.edu/~aaronson/zoo.html

  3. Overview • Most of what’s known about quantum computing can be cast in the query complexity model • Despite its simplicity, open problems abound • We make progress on some of these by studying randomized certificate complexity RC(f) and quantum certificate complexity QC(f) • Main results I’ll discuss today: • We’ll need both big quantum lower bound methods (adversary method and polynomial method)

  4. Background • f:{0,1}n{0,1} is a total Boolean function • D(f) (deterministic query complexity) •  R0(f) (zero-error randomized) •  R2(f) (bounded-error randomized) • Q2(f) (bounded-error quantum)  Q0(f) (zero-error quantum) •  QE(f) (exact quantum)

  5. Example

  6. Certificate Complexity • CX(f) = min # of queries needed to distinguish X from every Y s.t. f(Y)f(X) • Block Sensitivity • bsX(f) = max # of disjoint blocks B{x1,…,xn} s.t. flipping B changes f(X) • Example: For f=MAJ(x1,x2,x3,x4,x5), letting X=11110, • 11110 11110 • CX(MAJ)=3 bsX(MAJ)=2 C(f) and bs(f)

  7. Randomized Certificate Complexity • RCX(f) = min # of randomized queries needed to distinguish X from any Y s.t. f(Y)f(X) with ½ prob. • Quantum Certificate Complexity QC(f) • Example: For f=MAJ(x1,…,xn), letting X=00…0,RCX(MAJ) = 1 • Observations: Anything a prover might provide a verifier besides X, the verifier can compute for itself • One-sided and two-sided error are equivalent • Different notions of nondeterministic quantum query complexity: Watrous 2000, de Wolf 2002 RC(f) and QC(f)

  8. Ambainis’ Adversary Method(special case) Let D0,D1 be distributions over f-1(0), f-1(1) s.t. D0 looks “locally similar” to every 1-input, and D1 looks “locally similar” to every 0-input: Then

  9. Claim: • Any randomized certificate for input X can be made nonadaptive with constant blowup • By minimax theorem, exists distribution over {Y:f(Y)f(X)} s.t. for all i, xiyi w.p. O(1/RC(f)) • Adversary method then yields • For upper bound, use “weighted Grover”

  10. g g Example where C(f) = (QC(f)2.205)

  11. New Quantum/Classical Relation For total f, where ndeg(f) = min degree of poly p s.t. p(X)0  f(X)=1 Previous: D(f) = O(Q2(f)2Q0(f)2) (de Wolf), D(f) = O(Q2(f)6) (Beals et al.)

  12. Idea (follows Buhrman-de Wolf): Let p be s.t. p(X)0  f(X)=1 Maxonomials of p are monomials not dominated by other monomials—i.e. maxonomials of x1x2 – x2 + 2x3 are x1x2, 2x3 Nisan-Smolensky: For every 0-input X and maxonomial M of p, X has a sensitive block whose variables are all in M Consequence: Randomized 0-certificate must intersect each maxonomial w.p.  ½ Randomized algorithm: Keep querying a randomized 0-certificate, until either one no longer exists or p=0

  13. Lemma: O(ndeg(f) log n) iterations suffice w.h.p. Proof: Let S be current set of monomials, and Initially (S)  nndeg(f) ndeg(f)! We’re done when (S)=0 Claim: Each iteration decreases (S) by expected amount (S)/4e Reason:  1/e of (S) is concentrated on maxonomials, each of which decreases in degree w.p.  ½

  14. Local Proofs • When faced with a hard problem, analyze limitations of known techniques (Baker-Gill-Solovay, Razborov-Rudich) • Is • I claim that a ‘yes’ answer would require “global analysis” of Boolean functions • Given nn lattice of bits X, let f(X)=1 if there’s a square ‘frame’ of size n1/3n1/3, f(X)=0 otherwise

  15. Open Problems ~ • Is • Is If so we get

More Related