330 likes | 357 Views
Explore the evolution of TD-SCDMA technology with N-Frequency Cell Solutions to enhance capacity and efficiency, paving the way for multi-carrier HSDPA architecture. Discover the principles of this standardization progress.
E N D
3GPP Specification Evolution ZTE Corporation
Contents • Standard organization • TD-SCDMAEvolution • 3GPP Long Term Evolution
3G Standard organizations http:// www.ccsa.org.cn http:// www.3gpp.org
Contents • Standard organization • TD-SCDMAEvolution • 3GPP Long Term Evolution
3GPP LTE TDD LCR TDD (R4) LCR TDD (R5) LCR TDD (R6) LCR TDD (R7) SC-FDMA /OFDMA TDD OFDMA TDD MC-CDMA TDD • CCSA TD-SCDMA Stage III (R6/R7) TD-SCDMA Stage I (R4 2003/03) TD-SCDMA Stage II (R5) N Frequency Bands Cell TD-SOFDMA Multi-carrier Current status Short Term Evolution Long Term Evolution 2005 2007 TD-SCDMAEvolution Path
CCSA TD-SCDMA Standard’s present status Industry Standards issued by CCSA • 一、《2GHz TD-SCDMA数字蜂窝移动通信网 无线接入网络设备技术要求》 YD/T 1365-2006 • 二、《2GHz TD-SCDMA数字蜂窝移动通信网 无线接入网络设备测试方法》 YD/T 1366-2006 • 三、《2GHz TD-SCDMA数字蜂窝移动通信网 终端设备技术要求》 YD/T 1367-2006 • 四、《2GHz TD-SCDMA数字蜂窝移动通信网 终端设备测试方法 第一部分:基本功能、业务和性能测试》YD/T 1368.1-2006 • 五、《2GHz TD-SCDMA数字蜂窝移动通信网 终端设备测试方法 第二部分:网络兼容性测试》YD/T 1368.2-2006 • 六、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口技术要求 第一部分:总则》 YD/T 1369.1-2006 • 七、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口技术要求 第二部分:层一》 YD/T 1369.2-2006 • 八、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口技术要求 第三部分:信令传输》 YD/T 1369.3-2006 • 九、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口技术要求 第四部分:NBAP信令》 YD/T 1369.4-2006 • 十、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口技术要求 第五部分:公共传输信道数据流的数据传输和传输信令》YD/T 1369.5-2006 • 十一、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口技术要求 第六部分:公共传输信道数据流的用户平面协议》 YD/T 1369.6-2006 • 十二、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口技术要求 第七部分:专用传输信道数据流的数据传输和传输信令》YD/T 1369.7-2006 • 十三、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口技术要求 第八部分:专用传输信道数据流的用户平面协议》 YD/T 1369.8-2006 • 十四、《2GHz TD-SCDMA数字蜂窝移动通信网 Iub接口测试方法》 YD/T 1370-2006 • 十五、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口物理层技术要求 第一部分:总则》 YD/T 1371.1-2006 • 十六、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口物理层技术要求 第二部分:物理信道和传输信道到物理信道的映射》YD/T 1371.2-2006 • 十七、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口物理层技术要求 第三部分:复用和信道编码》 YD/T 1371.3-2006 • 十八、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口物理层技术要求 第四部分:扩频和调制》 YD/T 1371.4-2006 • 十九、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口物理层技术要求 第五部分:物理层过程》 YD/T 1371.5-2006 • 二十、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口物理层技术要求 第六部分:物理层测量》 YD/T 1371.6-2006 • 二十一、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口层2技术要求 第一部分:MAC协议》 YD/T 1372.1-2006 • 二十二、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口层2技术要求 第二部分:RLC协议》 YD/T 1372.2-2006 • 二十三、《2GHz TD-SCDMA数字蜂窝移动通信网 Uu接口RRC层技术要求》 YD/T 1373-2006
TD-SCDMAShort-term Evolution —— N-Frequency Cell Solution • Overcome the following problems in multiple-cell solution for improving capacity in TD-SCDMA: • The difficulties in cell search • The complexity in UE measurements • The problem in handover • System inefficiency • Implementation of N-frequency cell • Multiple frequency bands are configured in one cell • A master frequency band is configured • DwPTS and P-CCPCH are only configured for master band
TD-SCDMAShort Term Evolution —— MC-HSDPA N-frequency cell+HSDPA Multi-carrier HSDPA • HSDPA • N-frequency cell • Multiple frequency bands are configured for one logical cell • Facilitate to multiple frequency bands combining for HSDPA • Multi-carrier HSDPA is a combination of N-frequency cell and HSDPA • Higher peak data rate(N*2.8Mb/s) • More suitable for packet services
TD-SCDMAShort Term Evolution —— MC-HSDPA
TD-SCDMAShort Term Evolution —— MC-HSDPA Multi-Carrier HSDPA Architecture
TD-SCDMAShort Term Evolution —— MC-HSDPA Principles on multi-carrier HSDPA Standardization • Air interface shall keep compatible with N-frequency cell solution in CCSA TD-SCDMA stage I; • Physical layer: channel structure of HS-SCCHand HS-SICH is same to that for single-carrier HSDPA system ; • MAC layer: segmentation/combining. • UE Capability: adding UE multi-carrier HSDPA capability indicator in corresponding field. • The multi-carrier HSDPA is based on 3GPP R5 HSDPA, but the changes are limited to the minimum.
TD-SCDMAShort Term Evolution —— MBMS TDD MBMS Technology • MBMS( Multimedia Broadcast and Multicast Services) is an unidirectional point to multipoint bearer service in which data is transmitted from a single source entity to multiple recipients. • MBMS is basically a new broadcast and multicast radio bearer technology; it can provide high speed downlink, non-voice services for multiple users simultaneously and regardless of user location and radio conditions in full area coverage.
TD-SCDMAShort Term Evolution —— MBMS • Traditional non–MBMS results in radio resource bottlenecks by point-to-point transmission method • MBMS removes radio resource bottlenecks by point-to-multipoint transmission method • MBMS can efficiently utilize radio resource at air interface • MBMS can perform lower prices due to the saving in network resources
TD-SCDMAShort Term Evolution —— MBMS TDD MBMS architecture • MBMS architecture comprises four blocks: User Equipment (UE), UTRAN (UMTS Terrestrial Radio Access Network, Core Network (including GGSN and SGSN) and new blocks- Broadcast Multicast - Service Centre (BM-SC) • MBMS architecture enables the efficient usage of radio-network and core-network resources, with an emphasis on radio interface efficiency
TD-SCDMAShort Term Evolution —— MBMS TDD MBMS channels • MICH (MBMS notification Indicator Channel) • MCCH (MBMS point-to-multipoint Control Channel • MTCH (MBMS point-to-multipoint Traffic Channel) • MSCH (MBMS point-to-multipoint Scheduling Channel)
TD-SCDMAShort Term Evolution —— MBMS MBMS Feature over TDD Technology -Simulcast Combining with timeslot reused • TD-SCDMA can use selective combing and soft coming, and it can also use simulcast combining through timeslot reused technology on its special frame structure • The complexity of UE will be increased due to combining of multiple radio links simultaneously in UE. But, in TD-SCDMA, it can be avoided by combining macro-diversity with timeslot reused • Timeslot reused can increase further throughput gains on the basis of selective combining and soft combining
Higher Date rate in uplink Higher network efficiency Higher spectra efficiency Lower latency Efficient scheduling HSUPA TDD Faster retransmission Higher Modulation TD-SCDMAShort-term Evolution —— HSUPA FTP upload,Multimedia, Video- clips,email, telematics Gaming,video streaming Service requirement System requirement
TD-SCDMAShort-term Evolution —— HSUPA TD-SCDMAHSUPAkey technology-Efficient Scheduling
TD-SCDMAShort-term Evolution —— HSUPA TD-SCDMAHSUPA key technology-Efficient Scheduling • With Node B-based Packet Scheduling, two main improves: • Cell throughput is increased by means of faster adaption to interference variation and finer control of the total received uplink power. • User performance is improved by means of more frequently reallocation of radio resource to NRT users
TD-SCDMAShort-term Evolution —— HSUPA TD-SCDMAHSUPA key technology-Faster retransmission 80ms
TD-SCDMAShort-term Evolution —— HSUPA • Faster retransmission • Reaches maximum achievable cell throughput by means of faster retransmission of erroneously received data frame to reduce the number of RLC retransmission, since physical channel can be operated with higher BLER for same overall performance under this condition, which results to an increase in spectra efficiency. TD-SCDMAHSUPA key technology-Faster retransmission
Q k Q k 8PSK I I k k 16QAM QPSK • Higher order modulation improve spectrum efficiency in good propagation condition. TD-SCDMAShort-term Evolution —— HSUPA TD-SCDMAHSUPA key technology-Higher order modulation
TD-SCDMAShort-term Evolution —— HSUPA TD-SCDMA HSUPA’s latest progress • In March, 2006, at the TSG RAN meeting #31, a new work item proposal(“Proposed Work Item on 1.28 Mcps TDD Enhanced Uplink “) was approved. ZTE takes part in this WI with other companies. • The WI includes the following sub WIs: • 1.28 Mcps TDD Enhanced Uplink: Physical Layer • 1.28 Mcps TDD Enhanced Uplink: Layer 2 and 3 Protocol Aspects • 1.28 Mcps TDD Enhanced Uplink: UTRAN Iub/Iur Protocol Aspects • 1.28 Mcps TDD Enhanced Uplink: RF Radio Transmission/ Reception, System Performance Requirements and Conformance Testing
Contents • Standard organization • TD-SCDMAEvolution • 3GPP Long Term Evolution
3GPPLong-term Evolution —— Target • Significantly increased peak data rate e.g. 100 Mbps (downlink) and 50 Mbps (uplink) • Increase “cell edge bitrate” whilst maintaining same site locations as deployed today • Significantly improved spectrum efficiency ( e.g. 2-4 x Rel6) • Possibility for a Radio-access network latency (user-plane UE – RNC (or corresponding node above Node B) - UE) below 10 ms • Significantly reduced C-plane latency (e.g. including the possibility to exchange user-plane data starting from camped-state with a transition time of less than 100 ms (excluding downlink paging delay)) • Scaleable bandwidth • 5, 10, 20 and possibly 15 MHz • [1.25,] 2.5 MHz: to allow flexibility in narrow spectral allocations where the system may be deployed • Support for inter-working with existing 3G systems and non-3GPP specified systems
3GPPLong-term Evolution —— Target • Further enhanced MBMS • Reduced CAPEX and OPEX including backhaul • Cost effective migration from Rel-6 UTRA radio interface and architecture • Reasonable system and terminal complexity, cost, and power consumption. • Support of further enhanced IMS and core network • Backwards compatibility is highly desirable, but the trade off versus performance and/or capability enhancements should be carefully considered. • Efficient support of the various types of services, especially from the PS domain (e.g. Voice over IP, Presence) • System should be optimized for low mobile speed but also support high mobile speed • Operation in paired and unpaired spectrum should not be precluded • Possibility for simplified co-existence between operators in adjacent bands as well as cross-border co-existence
Services Network Mobile Network Circuit Packet Wireless Access Transport, Switch and Access 3GPPLong-term Evolution —— Network Architecture Horizontal Network SCP ASP Enterprise App Server Service management layer Softswitch Softswitch Control layer Switch layer IP Access layer LTE UMTS WLAN GERAN
3GPPLong-term Evolution —— Fundamental technology • OFDM(Orthogonal Frequency Division Multiplexing ) 信道分成若干正交子信道,高速数据信号转换成 并行的低速子数据流,调制到每个子信道上进行传输, 从而降低符号间干扰。 • MIMO(Multiple Input Multiple Output) 利用多天线来抑制信道衰落,在不增加带宽和 天线发送功率的情况下,提高信道容量及频谱利用率。 • MC(Multi-Carrier) 通过多载波的捆绑,来提高信道的传输速率。
3GPPLong-term Evolution —— Development Status • The requirement of LTE (TR25.913) is approved at 3GPP TSG RAN #28 meeting in 2005.6 • Now 3GPP TSG RAN is working on the TR25.912 (Feasibility Study for EUTRA and EUTRAN) • WG1:Physical layer aspects (TR25.814) • WG2: Radio interface protocol aspects (TR25.813) • WG3: Radio access architecture and interfaces (TR R3.018) • WG4: Radio performance and protocol aspects
TR25.913 V7.2.0 Requirements for EUTRA and UTRAN TR25.912 V0.0.4 [RP-060168] Feasibility Study for EUTRA and EUTRAN Outcome WG1 WG2 WG3 WG4 TR25.814 V1.2.0 Physical layer aspects for EUTRA (RP-060201) Editor: NTT DoCoMo • TR25.813 V0.5.1 • EUTRA and EUTRAN Radio interface protocol aspects • (RP-060176) • Editor: Nokia, LG, NEC, Motorola, Samsung TR R3.018 V0.2.0 EUTRA and EUTRAN Radio Access Architecture and Interfaces Editor: Vodafone, Ericsson SI TR: NTT DoCoMo Base Station: Ericsson Terminal: Motorola RRM: Nokia RF System Scenarios: Siemens WG specific TRs 3GPPLong-term Evolution —— Development Status
3GPPLong-term Evolution —— ZTE’s participation • ZTE begins to attend 3GPP LTE standard work from 2005.5 • ZTE is covering WG1/WG2/WG3 now • ZTE had already submitted many contributions to 3GPP RAN WG1/WG2/WG3 • ZTE is devoted to LTE key technology study
3GPPLong-term Evolution —— ZTE’s contribution • Frame structure and parameter adjustment • The proposal of CP length (R1-051358) is adopted in TR25.814 • Power de-grating • The proposal of UL PAPR reduction (R1-051008) is adopted in TR25.814 • Cell search • Intra-Node B Synchronization and UL timing control • Pilot design • Scheduling • Channel Multiplexing • Link adaptation • Random access • Channel coding • MIMO • Macro diversity