1 / 25

Chapter 4 Overview

Learn about the structural, electrical, hydraulic, and safety components of die casting machines and how they work together. Identify the purpose of each component and understand their importance for safe operation.

lsalinas
Download Presentation

Chapter 4 Overview

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 4 Overview • The DCM is very complex • Mechanical, electrical, hydraulic and safety systems all work together • Each system has many components • Additional equipment may be used

  2. Chapter 4 Objectives • Using a quality photograph, correctly identify all structural components, electrical system components, hydraulic pump components, and safety devices • Identify the purpose of all structural components, electrical system components, hydraulic pump components, and safety devices

  3. New Term • Solenoid • An electromagnet that shifts a metal core

  4. DCM’s Systems • Structural • Electrical • Hydraulic • Safety

  5. Structural Components • Structural components = framework • DCM Base • Support • Shape is generally a rectangular box • Usually extends under the entire DCM • Rear portion enclosed to form a steel tank used as a reservoir for the hydraulic fluid/oil

  6. Structural: Platens • 3 large plates that carry the DCM loads • Rest on the DCM base • Stationary: at front of DCM • Holds stationary die half on die space side • Moving: between stationary & rear platen • Moving/ejector half of die is mounted to it • Rear: at rear of DCM • Slides back and forth as the tie bars stretch

  7. Structural:Tie bars • 4 tie bars are long, round, solid beams mounted through four corners of platens • Hold the DCM together • Moving platen slides along the tie bars • Size and strength of the tie bars determines the size of the DCM • Some DCM’s replaced tie bars with a solid frame made from a casting

  8. Structural: Toggle mechanism • Connects rear and moving platens • Acts as a lever and gains a mechanical advantage during die close and locking • It overcame the deficiencies of using a large cylinder

  9. Electrical Components • Electrical energy powers and controls the DCM • The electric power is converted to hydraulic energy in order to do the actual work of the DCM

  10. Electrical: Motor and Control Panel • Electric motor(s) located at rear of DCM are directly coupled to the hydraulic pump • Electrical energy is converted into hydraulic energy • Pumps force oil into the hydraulic lines under pressure • Pose electric shock hazard

  11. Electrical: Solenoids • Shift the valves that control the volume and direction of hydraulic oil flow

  12. Electrical: Limit Switches • Limit switches are the sensors, the eyes and ears, of the electrical control system • Sense the position of doors, guards, cylinders and other moving components • Maintenance is essential to the safe operation of the DCM • Other types of switches and sensors, also

  13. Hydraulic System • DCM is operated by a hydraulic system • A fluid, fire-resistant oil is used to power the cylinders that make the DCM move • Operates at high pressures and high flow rates • Hydraulic fluid is hot and can cause burns • Repair/clean leaks and spills quickly

  14. Hydraulic: Hydraulic pumps • DCM typically has two hydraulic pumps • One pump capable of providing oil at high pressures but in low volumes • A second pump capable of providing a high volume of oil at low pressures

  15. Hydraulic: Filters • Filter(s) are required to keep the hydraulic fluid clean • Located at the outlet of the pumps • Require routine maintenance

  16. Hydraulic: Valves • Used to control amount and direction of oil flow • Solenoid-operated valves direct the flow to the head or rod side of a cylinder or direct oil to shift a large valve • May be manually operated • Series of valves mounted on a manifold may control the DCM’s speed control

  17. Hydraulic: Heat Exchanger • Operates similarly to a boiler • Hot hydraulic oil and cooling water run through the heat exchanger; the water cools the oil • Leakage can be troublesome • Hydraulic oil could be contaminated by water • Cooling water could be contaminated by the hydraulic oil

  18. Hydraulic:Cylinders • Open and close the DCM • Inject the metal into the die • Operate the ejection system • Move slides on the die • Actuate a safety ratchet and open and close a safety door at the die parting line

  19. Hydraulic:Injection Components • Inject the metal into the die • Hot chamber components include: • Shot cylinder, plunger coupling, plunger, rings, gooseneck, bushing and nozzle

  20. Hydraulic:Injection Components • Cold chamber components include: • Shot cylinder, plunger rod and tip, coupling and the cold chamber

  21. Hydraulic:Accumulator • A large steel tank • Partially filled with hydraulic oil • Above oil is high-pressure nitrogen gas • Used when large volume of oil required

  22. Hydraulic: Intensifier • Hydraulic device that increases hydraulic fluid pressure at end of injection stroke • This high pressure dramatically increases the metal pressure to: • Squeeze additional metal into the die cavity as the metal shrinks • Further compress trapped gases

  23. Safety Components • Die casting workplace has many hazards associated with it • DCM operates with high pressures, high forces, and high voltages using liquid metal at high temperatures • Need safety components and devices help ensure everyone’s safety

  24. Safety cont. • Die space area is protected by safety doors or gates • Prevent access to this area when the DCM closes • Guards at the toggle mechanism prevent access to mechanism when operating • Safety ratchet prevents the DCM closing • DCM will only close if safety conditions have been met and ratchet dog is withdrawn

  25. Summary • Structural system form the basis of the machine, providing support • Electrical system provide power to the machine and control it • Hydraulic system use a fluid, fire-resistant oil to power the cylinders that make DCM move • Safety components help prevent injuries and accidents, when used appropriately and coupled with safety-conscious actions

More Related