100 likes | 408 Views
Matlab Integral. TRAPZ(x,y) QUAD(FH,A,B) DBLQUAD(FH,X MIN ,X MAX ,Y MIN ,Y MAX ) TRIPLEQUAD(FH,X MIN ,X MAX ,Y MIN ,Y MAX ,Z MIN ,Z MAX ). Creating a function handle, FH, from a function, f: 1- inline object: FH=inline(‘f’)
E N D
Matlab Integral TRAPZ(x,y) QUAD(FH,A,B) DBLQUAD(FH,XMIN,XMAX,YMIN,YMAX) TRIPLEQUAD(FH,XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX) Creating a function handle, FH, from a function, f: 1- inline object: FH=inline(‘f’) 2- function handle: Write a m_file with the name ‘filename.m’ in the following format: function z=filename(x,y) z=f(x,y) FH=@filename
Trapz computes the integral of Y with respect to X using the trapezoidal method Cumtrapz computes the cumulative integral of Y with respect to X using trapezoidal integration. Trapz(x,y); cumtrapz(x,y) x=linspace(-1,2,100); y=humps(x); format long Area=trapz(x,y) plot(x,y) grid on xlabel(‘x’) ylabel(‘humps(x)’) title(‘integral of humps’) z=cumtrapz(x,y) hold on plot(x,z) hold off Area =26.34473119524596
QUAD(FH,A,B) y=inline('1./(x.^3-2*x-5)') Q = quad(y,0,2) test2a.m file: function y=test2a(x) y=1./(x.^3-2*x-5); Answer: y = Inline function: y(x) = 1./(x.^3-2*x-5) Q = -0.4605 quad(@test2a,0,2) ans = -0.4605
DBLQUAD(FH,XMIN,XMAX,YMIN,YMAX) Evaluates the double integral of f(X,Y) over the rectangle XMIN <= X <= XMAX, YMIN <= Y <= YMAX. f can be an inline object or a function handle. Q = dblquad(inline('y*sin(x)+x*cos(y)'), pi, 2*pi, 0, pi) or Q = dblquad(@integrnd, pi, 2*pi, 0, pi) where integrnd.m is an M-file: function z = integrnd(x, y) z = y*sin(x)+x*cos(y); Answer: Q = -9.86960437725457
TRIPLEQUAD(FH,XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX) evaluates the triple integral of FUN(X,Y,Z) over the three dimensional rectangular region XMIN <= X <= XMAX, YMIN <= Y <= YMAX, ZMIN <= Z <= ZMAX. Q = triplequad(inline('y*sin(x)+z*cos(x)'), 0, pi, 0, 1, -1, 1) Answer: Q = 1.99999999436264
Line Integral Surface Integral Volume Integral
Line Integral See Solution Q = quad(inline('-18.*sin(phi).*cos(phi)'),(pi/2),pi) Q = 8.99999998379294