890 likes | 1.07k Views
TCOM 551 & ECE 463 DIGITAL COMMUNICATIONS. SPRING 2007 IN 206 Tuesdays 4:30 – 7:10 p.m. Dr. Jeremy Allnutt jallnutt@gmu.edu. General Information - 1. Contact Information Room: Science & Technology II, Room 269 Telephone (703) 993-3969 Email: jallnutt@gmu.edu
E N D
TCOM 551 & ECE 463DIGITAL COMMUNICATIONS SPRING 2007 IN 206 Tuesdays 4:30 – 7:10 p.m. Dr. Jeremy Allnutt jallnutt@gmu.edu Lecture number 1
General Information - 1 • Contact Information • Room: Science & Technology II, Room 269 • Telephone (703) 993-3969 • Email: jallnutt@gmu.edu • Office Manager: TBD (703) 993-3810 • Email: TBD • Office Hours • Mondays and Wednesdays 3:00 – 6:00 p.m.Please, by appointment only Lecture number 1
General Information - 2 • Course Outline • Go to http://telecom.gmu.eduand click oncourse schedule • Scroll down to TCOM 551 • Bad weather days: call (703) 993-1000 • You MUST Have The Following • Bateman Textbook, preferably also Kolimbiris • A Mathematical Calculator – please, simple ones only Lecture number 1
General Information - 3 • Homework Assignments • Feel free to work together on these, BUT • All submitted work must be your own work • Web and other sources of information • You may use any and all resources, BUT • You must acknowledge all sources • You must enclose in quotation marks all parts copied directly – and you must give the full source information Lecture number 1
No double jeopardy General Information - 4 • Exam and Homework Answers • For problems set, most marks will be given for the solution procedure used, not the answer • So: please give as much information as you can when answering questions: partial credit cannot be given if there is nothing to go on • If something appears to be missing from the question set, make – and give – assumptions used to find the solution Lecture number 1
General Information - 5 • Term Paper • Any topic in field of Digital Communications • About 10 pages long + about 4 figures • Can work alone or in small groups (length of paper grows with number in group – with permission only) • There will be no specific points given for the paper, but it can help (or ruin) your grade Possible Topics? Lecture number 1
General Information – 6A • Examples of Term Paper Topics • TDMA vs. CDMA in various situations • LD-CELP: what is it and how does it help? • What is net-centric communications? • Digital Imaging and its impact on sports casting • DBS: why did digital succeed where analog failed • What is a smart antenna and how will it help? • UWB applications • Bluetooth vs. IEEE 802.11B Lecture number 1
General Information – 6B • Examples of Term Paper Topics (Contd.) • MPEG2: what is it and how does it help? • Why has MPEG-4 taken the lead in video streaming? • Where to next with DVD’s? • Consequences of combining RFID with GPS • Is free-space optical communications for real? • What are the comparative merits of different large screen displays (LCD, DLP, etc.)? • Talking appliances? Etc.!!! Lecture number 1
General Information - 7 • Class Grades • Emphasis is on overall effort and results • Balance between homework, tests, paper + final exam: • Homework - 15% • Tests - 30 + 30% • Final exam - 25% • Term Paper - 0% Lecture number 1
Term Paper Grade Percentage • No mark will be allocated towards the paper. The paper will be graded as triple plus (3+), through dot (·), to triple minus (3–). A student with a final grade on the borderline between two grades may be moved up across the borderline if his/her paper is more than a plus (+). • A student who does not hand in an adequate paper by the final exam without prior permission will have his/her final exam score reduced in half Lecture number 1
Another alternative http://ece.gmu.edu/coursepages.htm TCOM 551 & ECE 463 Course Plan • Go to http://telecom.gmu.edu,click on course schedule, scroll down to TCOM 551 • In-Class Tests scheduled for - February 27th - April 10th • In-Class Final exam scheduled for - May 8th (very exceptionally, May 15th) Lecture number 1
TCOM 551 & ECE 463 Course Plan • Please remember: • If there is a snow day before Spring Break (March 11th through 18th), we will have a make-up class during the spring break (*) • If there is a “snow day” after the Spring Break, we will probably only have a make-up class if we lose more than one lecture (see slide 11) (*) Undergraduates taking ECE 463 who have made plans for spring break should let me know if we do require a make-up lecture during spring break Lecture number 1
TCOM 551 & ECE 463 Lect. 1 Outline • Sine Wave Review • Frequency, Phase, & Wavelength • Logarithms and dB (decibel) notation • Core Concepts of Digital Communications • Source info., Carrier Signal, Modulation • C/N, S/N, and BER • Performance & Availability Lecture number 1
Sine Wave Review - 1 We all know that the Sine of an angle is the opposite side divided by the hypotenuse, i.e. B Sine (a) = A/B A Angle a But what happens if line B rotates about Point P? Point P Lecture number 1
Sine Wave Review - 2 Line B now describes a circle about Point P B a What happens if we shine a light from the left and project the shadow of B onto a screen? Point P Lecture number 1
Sine Wave Review - 3 End of “B” projected onto the screen B a Point P Light from the left Screen on the right Lecture number 1
Sine Wave Review - 4 End of “B” projected onto the screen As line “B” rotates about the center point, P, the projected end of “B” oscillates up and down on the screen. What happens if we move the screen to the right and ‘remember’ where the projected end of “B” was? Screen on the right Lecture number 1
Sine Wave Review - 5 Locus of “B” end-point We have a Sine Wave! One oscillation = One wavelength, a.k.a. SHM ScreenPosition 1 ScreenPosition 2 Lecture number 1
Sine Wave Review - 5 Remember:Sine 0 = 0; Sine 90 = 1; Sine 180 = 0; Since 270 = -1; Sine 360 = Sine 0 = 0 +1 0 90 180 270 360 Degrees -1 Lecture number 1
Sine and Cosine Waves – 1 SineWave Sine Wave = Cosine Waveshifted by 90o 0o 90o 180o 270o 0 = 360o 90o 180o CosineWave Lecture number 1
Sine and Cosine Waves – 2 • There is a useful java applet that will show you a sine wave derived from circular motion (simple harmonic motion) • The applet is found at:http://home.covad.net/alcoat/sinewav.htm It is very slow to load: have patience! Lecture number 1
Sine and Cosine Waves – 3 • Another applet that lets you ‘play’ with two sine waves to see the combined waveform is: http://www.udel.edu/idsardi/sinewave/sinewave.html Lecture number 1
For more details on Sine Waves Sine and Cosine Waves – 4 SineWave Sine Wave = Cosine Waveshifted by 90o 0o 90o 180o 270o 0 = 360o 90o 180o CosineWave Lecture number 1
http://en.wikipedia.org/wiki/Image:Sine_Cosine_Graph.png Sine and Cosine Waves – 5 Lecture number 1
Sine and Cosine Waves – 6 • Any wave that is periodic (i.e. it repeats itself exactly over succeeding intervals) can be resolved into a number of simple sine waves, each with its own frequency • This analysis of complex waveforms is part of the Fourier Theorem • You can build up a complex waveform with harmonics of the fundamental frequency Lecture number 1
http://www.sfu.ca/sonic-studio/handbook/Harmonic_Series.html Harmonics – 1 A harmonic is a multiple of a fundamental frequency. In the figure below, a fundamental frequency of 100 Hz is shown with 31 harmonics (total of 32 “lines”). Lecture number 1
http://www.sfu.ca/sonic-studio/handbook/Law_of_Superposition.htmlhttp://www.sfu.ca/sonic-studio/handbook/Law_of_Superposition.html Harmonics – 2 In this example, 20 harmonics are mixed together to form a saw-tooth waveform Lecture number 1
Sine and Cosine Waves - 7 Sine and Cosine waves can therefore be considered to be at right angles, i.e. orthogonal, to each other “Cosine Wave” Sine Wave Lecture number 1
Sine and Cosine Waves - 8 • A Radio Signal consists of an in-phase component and an out-of-phase (orthogonal) component • Signal, S, is often written in the generic formS = A cos + j B sin Where j = ( -1 ) In-phase component Orthogonal component We will only consider Real signals Real Imaginary Lecture number 1
Sine and Cosine Waves - 9 • Two concepts • The signal may be thought of as a time varying voltage, V(t) • The angle, , is made up of a time varying component, t, and a supplementary value, , which may be fixed or varying • Thus we have a signalV(t) = A cos (t +) Lecture number 1
Sine and Cosine Waves - 10 Vary these to Modulate the signal • Time varying signalV(t) = A cos (t +) Phase: PM; PSK Instantaneous value of the signal Frequency: FM; FSK Amplitude: AM; ASK Note: = 2 f Lecture number 1
Back to our Sine Wave – 1Defining the Wavelength The wavelength is usually defined at the “zero crossings” Lecture number 1
Back to our Sine Wave - 2 One revolution = 360oOne revolution also completes one cycle (or wavelength) of the wave.So the “phase” of the wave has moved from 0o to 360o (i.e. back to 0o ) in one cycle.The faster the phase changes, the shorter the time one cycle (one wavelength) takes Lecture number 1
Back to our Sine Wave – 3Two useful equations The time taken to complete one cycle, or wavelength, is the period, T.Frequency is the reciprocal of the period, that isf = 1/T Phase has changed by The rate-of-change of the phase, d/dt, is the frequency, f. Lecture number 1
Before we look at d/dt, lets look at rate-of-change of phase Sine Wave – 4 • What do we mean “Rate-of-change of phase is frequency”? • One revolution = 360o = 2 radians • One revolution = 1 cycle • One revolution/s = 1 cycle/s = 1 Hz • Examples: • 720o/s = 2 revolutions/s = 2 Hz • 18,000o/s = 18,000/360 revs/s = 50 revs/s = 50 Hz Lecture number 1
http://www.sfu.ca/sonic-studio/handbook/Simple_Harmonic_Motion.htmlhttp://www.sfu.ca/sonic-studio/handbook/Simple_Harmonic_Motion.html Simple Harmonic Motion “Geometric derivation of simple harmonic motion. A point p moves at constant speed on the circumference of a circle in counter-clockwise motion. Its projection OC on the vertical axis XOY is shown at right as a function of the angle q. The function described is that of a sine wave.” From the URL above Lecture number 1
d/dt Digression - 1 Person walks 16 km in 4 hours.Velocity = (distance)/(time)Therefore, Velocity = 16/4 = 4 km/hVelocity is really the rate-of-change of distance with time.What if the velocity is not constant? kilometers 1612840 0 1 2 3 4 5 6 7 8 9Time, hours Lecture number 1
d/dt Digression - 2 kilometers You can compute the Average Velocity using distance/time,(i.e. 16/8 = 2 km/h), but how do you get the person’s speed at any particular point? 1612840 0 1 2 3 4 5 6 7 8 9Time, hours Answer: you differentiate, which means you find the slope of the line. Lecture number 1
d/dt Digression - 3 kilometers To differentiate means to find the slope at any instant.The slope of a curve is given by the tangent at that point, i.e., A/BIn this case, A is in km and B is in hours. It could equally well be phase, , and time, t. 1612840 A B 0 1 2 3 4 5 6 7 8 9Time, hours Lecture number 1
d/dt Digression - 4 • When we differentiate, we are taking the smallest increment possible of the parameter over the smallest interval of (in this case) time. • Small increments are written ‘d’(unit) • Thus: the slope, or rate-of-change, of the phase, , with time, t, is written as d/dt Lecture number 1
Sine Wave Continued • Can think of a Sine Wave as a Carrier Signal,i.e. the signal onto which the information is loaded for sending to the end user • A Carrier Signal is used as the basis for sending electromagnetic signals between a transmitter and a receiver, independently of the frequency Lecture number 1
Carrier signals - 1 • A Carrier Signal may be considered to travel at the speed of light, c, whether it is in free space or in a metal wire • Travels more slowly in most substances • The velocity, frequency, and wavelength of the carrier signal are uniquely connected byc = f Wavelength Velocity of light Frequency Lecture number 1
Carrier signals - 2 • Example • WAMU (National Public Radio) transmits at a carrier frequency of 88.5 MHz • What is the wavelength of the carrier signal? • Answer • c =(3×108) m/s = f ×= (88.5 106) × () • Which gives = 3.3898 m = 3.4 m Remember: Make sure you are using the correct units Lecture number 1
Digression - UNITS • Standard units to use are MKS • M = meters written as m • K = kilograms written as kgm • S = seconds written as s • Hence • the velocity of light is in m/s • The wavelength is in m • And the frequency is in Hz = hertz So: do not mix feet with meters and pounds with kilograms Lecture number 1
Carrier signals - 3 • A Carrier Signal can • carry just one channel of information (this is often called Single Channel Per Carrier = SCPC) • Or carry many channels of information at the same time, usually through a Multiplexer Single Channel Note: The modulator has been omitted in these drawings Tx SCPC Multiplexer Multiplexed Carrier Multi-channel carrier Tx Lecture number 1
Logarithms - 1 • The use of logarithms came about for two basic reasons: • A need to multiply and divide very large numbers • A need to describe specific processes (e.g. in Information Theory) that counted in different bases • Numbers are to the base 10; i.e. we count in multiples of tens Lecture number 1
Logarithms - 2 • 1, 2, 3, 4, 5, 6, 7, 8, 9, 10To be easier to see, this should be written as the series00, 01, 02, 03, 04, 05, …. 09, 10 • 11, 12, 13, 14, 15 ….. • ….. • 91, ……, 97, 98, 99, 100 • … • 991, ….., 997, 998, 999, 1000 We actually count from 1 to 10 but the numbering goes from 0 to 9, then we change the first digit and go from 0 to 9 again, and so on Lecture number 1
Logarithms - 3 • Counting to base 10 is the Decimal System • We could equally well count in a Duodecimal System, which is a base 12, a Hexadecimal System, which is a base 16, a Binary System, which is a base 2, etc. • Sticking with the Decimal System Lecture number 1
Logarithms – 4A • A Decimal System can be written as a power of 10, for example • 100 = 1 • 101 = 10 • 102 = 100 • 103 = 1,000 • 104 = 10,000 Lecture number 1
Logarithms – 4B • A Decimal System can be written as a power of 10, for example • 100 = 1 • 101 = 10 • 102 = 100 • 103 = 1,000 • 104 = 10,000 Do you detect any logic here? Lecture number 1