250 likes | 358 Views
Perceptual declipping of audio signals through compressed sensing: algorithm design and evaluation. Tussentijdse presentatie. Naim Mansour. Promotor: Prof. dr. ir. Marc Moonen Assistent: Ir. Bruno Defraene. Overzicht. Onderwerp & doelstellingen (vermelding Steven) – 3 min.
E N D
Perceptual declipping of audio signals through compressed sensing: algorithm design and evaluation Tussentijdse presentatie NaimMansour Promotor: Prof. dr. ir. Marc Moonen Assistent: Ir. Bruno Defraene
Overzicht • Onderwerp & doelstellingen (vermelding Steven) – 3 min. • Compressedsensing – 5 min. • Wat? • Theoretisch • Declipping (don’tforget perfect reconstruction) • CS & Declipping – 4 min. • Specifieke theorie • Eerder werk (INRIA, AxBe) • Kort: perceptuele component • Toelichting gemaakte keuzes & motivatie (2 keuzes) – 3 min. • Don’tforget frame length (basicallyall details) • Implementatie & resultaten (demo) – 5 min. • Planning, en plannen voor fase 2 – 2 min. • Dank & vragen
Overview • Subject • CompressedSensing • CS & Declipping • Perceptual components • Extra: IRL1 • Implementation • Evaluation
Subject • Declipping of audio signals • Through compressedsensing • Perceptual • Algorithm design & evaluation
CompressedSensing: general • Candès, Romberg, Tao – 2006 • Recoversparsesignalfrom sub-Nyquistratesampledmeasurements • Consider the signals, sparse in a fixed basis : • Measurement basis selects reliable values fromsaccordingto ( is known as the sensing base): • Reconstructionthroughconstrained L0/L1 minimization:
CompressedSensing: Choice of Lp • Solution equalstranslation of null(A)-planeby vector z • L0 & L1 lead tosparse solutions, L2doesn’t • L1 minimization is convex -> convex optimization, • L0 minimization non-convex -> greedyopt.
CompressedSensing: AxBe model • Other possiblemodel (Bölcskei & Studer, – 2011) • In case of clipping, we considertobemeasurementincludingclipped samples (). No explicit measurement matrices, and, toobtainsparse error base (). • Recovery throughprojected Lpminimization:
CompressedSensing: Recovery • Certain theoreticalboundsforperfect recovery of signal • Classical model (no noiseassumption): • AxBe model: • Coherence of a basis: measureof decorrelationin analysis domain • Fourierbase: DCT base: ,
CS & Declipping: recovery • Recovery ability dependent on coherence of sensing base • Classical CS: Usage of pseudorandom measurement matrices (e.g. iid Gaussian sampling) leads to very low coherence • Declipping: reliable, “sampled” values in signal are unclipped ones-> clearly not pseudorandom! • Coherence of combined Fourier/DCT base with clipping sensing base = coherence Fourier/DCT • Recovery guarantees for DCT base ( reliable samples): • Perfect recovery of real audio signals practically always impossible, since
CS & Declipping: • Missing samples will always lie beyond the clipping threshold • Lp minimization can be improved through introduction of additional linear constraints
CS & Declipping: previouswork • INRIA • Bölcskei
Perceptual components • Perceptualweighting matrix based on acousticloudnessperception • Psychoacousticallyoptimized (adaptive) basis
Extra: IRL1 • Iterativelyreweighted L1 minimization (Candès, Wakin, Boyd – 2007)
Implementation: general • 2 mainchoices • PCS throughbounded L1 minimization, usingperceptualweighting, Axy & AxBe models (furtherimprovementthrough IRL1) • PCS throughbounded L0 minimization, usingpsychoacousticwavelet basis, Axy & AxBe models • Incremental design: implementation & evaluationwith & without bounds, with & without perceptual components,…
Planning & future prospects • Semester 2 • Executepsychoacoustic experiments • Finish algorithms • Write finaltexts
References • http://people.ee.duke.edu/~willett/SSP//Tutorials/ssp07-cs-tutorial.pdf • Recovery of SparselyCorruptedSignals blablabla