1 / 11

Kriptografi (Part III)

Kriptografi (Part III). Metode Affin Chiper. Karakter = Pi Kunci = a,k Enkripsi Ci =(( a x Pi) + k )mod 26 Deskripsi Pi=1/a( Ci -k) mod 26 Indeks dimulai dari nilai 0 Nilai k sebarang Akan tetapi syarat a Gcd ( a,n )=1. Contoh. Kunci : 5,15 Kunci:7,8

lucita
Download Presentation

Kriptografi (Part III)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kriptografi (Part III)

  2. MetodeAffinChiper Karakter = Pi Kunci = a,k Enkripsi Ci=((a x Pi) +k )mod 26 Deskripsi Pi=1/a(Ci-k) mod 26 Indeksdimulaidarinilai 0 Nilaik sebarang Akantetapisyarat a Gcd(a,n)=1

  3. Contoh Kunci : 5,15 Kunci:7,8 Pesan :PAGI Pesan : MAKIN Chiperteks? Plainteks?

  4. Metode Hill Chiper Kunciadalahmatriksbujursangkardengandeterminanmisalnya d, mempunyaisyaratgcd(d,26)=1 Enkripsi Plain Teks = P Kunciberukuran K x K Plain teksdibloksetiap k karakter

  5. Metode Hill Chiper Perkalianmatriks key dari plain teks Dibentukmatriksdenganbanyakkolom k dansetiapbarisadalahmasing – masingblok Dimulaidariindeks 0 C= P K mod n P=CK-1 mod n

  6. Contoh Pesan : SIANG Kunci : Pesan : SEMOGA Kunci:

  7. Transposisi Merubahposisikarakterdalamplainteks Plain teksdanchiperteksberasaldari alphabet yang sama. Tekniktransposisistandar • Bagi plain tekskedalamblok – blok • Lakukanpermutasikarakter

  8. Transposisi zigzag

  9. Transformasisegitiga

More Related