250 likes | 313 Views
now the extensions…. NL: a pure logic of residuation. Axiom Transitivity Residuation. Lambek calculus (sequents). + modalities. If brings you an A, then when provided with the structure S, it gives you an A with the structure S. If with S brings you an A, then without it
E N D
NL: a pure logic of residuation • Axiom • Transitivity • Residuation
+ modalities If brings you an A, then when provided with the structure S, it gives you an A with the structure S If with S brings you an A, then without it it gives you an A which lacks S!
A A A A []L ([]A) A (A) A L []R []A A A []A consequences R
+ structural postulates • Example :
¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a ¯ à n \ n n \ n (( np , ( np \ s ) / np ), s \ s ) s / [] np a a
¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a ¯ à n \ n n \ n (( np , ( np \ s ) / np ), s \ s ) s / [] np a a
¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a n \ n n \ n , s / a a
¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a
¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ((( np , ( np \ s ) / np ), ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a
¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a
¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a
¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a
adapted proof-nets • To take restructuring of resources into account • To represent modalities • see Richard Moot’s thesis • « Proof Nets for Linguistic Analysis »
a/a a/a a/a a/a
a a/a a a/a a/a a/a a/a
a a a/a a/a a a a/a a/a a/a a/a
a a a a/a a/a a/a a a a a/a a/a a/a a/a
a a a a/a a/a a/a a a a a/a a/a a/a a/a a/a
a a a a/a a/a a/a a a a a/a a/a a/a a/a a/a
a a/a a restructuring-1 a/a a/a a a a/a
restructuring-2 a/a a/a a/a a a a/a
contraction step a/a a/a a/a a