1 / 25

now the extensions…

now the extensions…. NL: a pure logic of residuation. Axiom Transitivity Residuation. Lambek calculus (sequents). + modalities. If  brings you an A, then when provided with the structure S, it gives you an A with the structure S. If  with S brings you an A, then without it

lucius
Download Presentation

now the extensions…

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. now the extensions…

  2. NL: a pure logic of residuation • Axiom • Transitivity • Residuation

  3. Lambek calculus(sequents)

  4. + modalities If  brings you an A, then when provided with the structure S, it gives you an A with the structure S If  with S brings you an A, then without it it gives you an A which lacks S!

  5. A  A A  A []L ([]A)  A (A)  A L []R []A  A A  []A consequences R

  6. + structural postulates • Example :

  7. ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a ¯ à n \ n n \ n (( np , ( np \ s ) / np ), s \ s ) s / [] np a a

  8. ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a ¯ à n \ n n \ n (( np , ( np \ s ) / np ), s \ s ) s / [] np a a

  9. ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a n \ n n \ n , s / a a

  10. ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  11. ¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ((( np , ( np \ s ) / np ), ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  12. ¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  13. ¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  14. ¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  15. adapted proof-nets • To take restructuring of resources into account • To represent modalities • see Richard Moot’s thesis • « Proof Nets for Linguistic Analysis »

  16. Uses a contraction criterion (graph-rewriting)

  17. a/a a/a a/a a/a

  18. a a/a a a/a a/a a/a a/a

  19. a a a/a a/a a a a/a a/a a/a a/a

  20. a a a a/a a/a a/a a a a a/a a/a a/a a/a

  21. a a a a/a a/a a/a a a a a/a a/a a/a a/a a/a

  22. a a a a/a a/a a/a a a a a/a a/a a/a a/a a/a

  23. a a/a a restructuring-1 a/a a/a a a a/a

  24. restructuring-2 a/a a/a a/a a a a/a

  25. contraction step a/a a/a a/a a

More Related