1 / 25

A Pure Logic of Residuation in Axiom & Transitivity Lambek Calculus with Modalities

Explore the pure logic of residuation in Axiom, Transitivity & Residuation Lambek Calculus with modalities. Learn how structures impact A and how absence of S affects A’s structure. Discover consequences, sequents, and structural postulates. Examples include non-peripheral extraction. Adapted proof-nets consider resource restructuring and represent modalities. Refer to Richard Moot’s thesis "Proof Nets for Linguistic Analysis" which uses a contraction criterion. Discover restructuring-1, restructuring-2, and contraction step.

lucius
Download Presentation

A Pure Logic of Residuation in Axiom & Transitivity Lambek Calculus with Modalities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. now the extensions…

  2. NL: a pure logic of residuation • Axiom • Transitivity • Residuation

  3. Lambek calculus(sequents)

  4. + modalities If  brings you an A, then when provided with the structure S, it gives you an A with the structure S If  with S brings you an A, then without it it gives you an A which lacks S!

  5. A  A A  A []L ([]A)  A (A)  A L []R []A  A A  []A consequences R

  6. + structural postulates • Example :

  7. ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a ¯ à n \ n n \ n (( np , ( np \ s ) / np ), s \ s ) s / [] np a a

  8. ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a ¯ à n \ n n \ n (( np , ( np \ s ) / np ), s \ s ) s / [] np a a

  9. ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ¯ à ((( np , ( np \ s ) / np ), s \ s ), [] np ) s n n \ n n a a n \ n n \ n , s / a a

  10. ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ¯ à ((( np , ( np \ s ) / np ), [] np ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  11. ¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ((( np , ( np \ s ) / np ), ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  12. ¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  13. ¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  14. ¯ à [] np ¯ à [] np ¯ à (( np ( np \ s ) / np ), s \ s ) [] np ¯ à ( n \ n ) /( s / [] np ), (( np , ( np \ s ) / np ), s \ s ) n \ n a Example: non peripheral extraction(that I met _ yesterday) .... (( np , (( np \ s ) / np , np )), s \ s ) s a à L ¯ à (( np , (( np \ s ) / np , [] np )), s \ s ) s a P 1 ) ((( np , ( np \ s ) / np , ), s \ s ) s n n n n a a a P 2 ((( np , ( np \ s ) / np ), s \ s ), ) s n n \ n n a a n \ n n \ n , s / a a

  15. adapted proof-nets • To take restructuring of resources into account • To represent modalities • see Richard Moot’s thesis • « Proof Nets for Linguistic Analysis »

  16. Uses a contraction criterion (graph-rewriting)

  17. a/a a/a a/a a/a

  18. a a/a a a/a a/a a/a a/a

  19. a a a/a a/a a a a/a a/a a/a a/a

  20. a a a a/a a/a a/a a a a a/a a/a a/a a/a

  21. a a a a/a a/a a/a a a a a/a a/a a/a a/a a/a

  22. a a a a/a a/a a/a a a a a/a a/a a/a a/a a/a

  23. a a/a a restructuring-1 a/a a/a a a a/a

  24. restructuring-2 a/a a/a a/a a a a/a

  25. contraction step a/a a/a a/a a

More Related