260 likes | 349 Views
ATM OCN 100 - Fall 2000 LECTURE 8. ATMOSPHERIC ENERGETICS: RADIATION & ENERGY BUDGETS A. INTRODUCTION: What maintains life? How does Planet Earth maintain a habitable environment?. B. ENERGY (HEAT) BUDGETS. Energy budget philosophy INPUT = OUTPUT + STORAGE
E N D
ATM OCN 100 - Fall 2000 LECTURE 8 ATMOSPHERIC ENERGETICS:RADIATION & ENERGY BUDGETS • A. INTRODUCTION: • What maintains life? • How does Planet Earth maintain a habitable environment?
B. ENERGY (HEAT) BUDGETS • Energy budget philosophy INPUT = OUTPUT + STORAGE • Planetary annual energy budget • Short wave radiation components • Long wave radiation components • Non radiative components (where)...
Background - The Earth, The Sun &The Radiation Link • INPUT -- Solar Radiation • From Sun radiating at temperature 6000 K; • Peak radiation m; • Solar Constant 2cal/cm2/min or 1370 W/m2 • OUTPUT -- Terrestrial radiation • Emitted from earth-atmosphere system; • Radiating temperature • Peak radiation region m.
Planetary Radiative Energy Budget From Geog. 101 UW-Stevens Point
PLANETARY ENERGY BUDGETSShort Wave Components • Disposition of solar radiation in Earth-atmosphere system • Reflected • Scattered • Absorbed • Transmitted • Implications
PLANETARY ENERGY BUDGETSLong Wave Components • Disposition of long radiation in Earth-atmosphere system • Emitted • Absorbed • Transmitted
PLANETARY ENERGY BUDGETSLong Wave Components (con’t.) • Atmospheric or “Greenhouse” Effect • Background • “Greenhouse Gases” [H2O, CO2, CH4] • Implications
PLANETARY ENERGY BUDGETSNon-Radiative Components • Disposition of non-radiative fluxes in Earth-atmosphere system • Types of non-radiative fluxes • Sensible heat transport • Latent Heat transport • Implications
PLANETARY ENERGY BUDGETS (con’t.) • ANNUAL AVERAGE Input = Output Absorbed solar = Emitted terrestrial • LATITUDINAL DISTRIBUTION • Input & Output Curves • Energy surplus & deficit regions • Meridional energy transport in Atmosphere & Oceans
ENERGY BUDGETS (con’t.) • LOCAL ENERGY BUDGETS • THE FORCING (Energy Gain) • Radiative Controls • Latitude • Clouds • Air Mass Controls • Warm Air Advection & Cold Air Advection • THE RESPONSE • Temperature & Temperature Variations
ENERGY BUDGETS (con’t.) • FACTORS TO CONSIDER in the Thermal Response • Albedo (reflectivity) • Conductivity • Specific HeatQuantity of heat required to change temperature of a unit mass of substance by 1 Celsius degree.
Thermal Conductivity Example: Change in Snow Cover See Figure 3.6, Moran & Morgan (1997)
TEMPERATURE RESPONSEforsubstances with differing specific heatsSee Table 3.2, Moran & Morgan (1997)
ENERGY BUDGETS (con’t) • Local energy budgets • Features of local energy budgets • Annual • Summer maximum temperature • Winter minimum temperature • Diurnal • Afternoon maximum temperature • Pre-dawn minimum temperature