1 / 17

2008

2008. First-principles study of thin metallic films deposited on cristalline ‘high-k’ oxide. Fabien Fontaine-Vive Philippe Blaise. Simulating electronic nanodevices. A multi-scale approach from ab-initio to Monte-Carlo is needed. MOS 45nm. TEM image by A.M. Papon (L éti-MINATEC).

luka
Download Presentation

2008

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2008 First-principles study of thin metallic films deposited on cristalline ‘high-k’ oxide Fabien Fontaine-Vive Philippe Blaise Presentation name - Speaker name

  2. Simulating electronic nanodevices A multi-scale approach from ab-initio to Monte-Carlo is needed MOS 45nm TEM image by A.M. Papon (Léti-MINATEC) Presentation name - Speaker name Fabien Fontaine-Vive

  3. Experimental inputs W on HfO2 X-Ray Diff. by S. Allegret (Léti-MINATEC) Presentation name - Speaker name Fabien Fontaine-Vive

  4. Construction of the metal-oxide interfacial supercell, two approaches: • stacking arbitrary crystalline surfaces together, suitable for close crystallographic arrangement Ex: cubic metal staking on cubic oxide Cubic metal crystal = + Supercell relaxation Cubic SiO2 Fmax ~ 0.05-0.1 eV/A But ! How stacking different crystalline phases like a cubic phase stacking on a monoclinic highk oxyde m-HfO2 Presentation name - Speaker name Fabien Fontaine-Vive

  5. Epitaxial approach: depositing metal atoms on the oxide surface, thermal annealing T -> 0 K N atoms of metal N relaxation, N*1ps Vo= -Vz.z = Monoclinic HfO2, Surface orientation 001 z Relaxed interface structures (very small Fmax, < 0.01 eV/A), with the previous method, Fmax > 5 eV/A Presentation name - Speaker name Fabien Fontaine-Vive

  6. on 2 types of m-HfO2 substrate 2 types of metal Matching surfaces: Small misfit for W bcc 110 oriented surface on m-HfO2 001 surface (3*a, 1*b) body centred cubic (bcc) W && hexagonal compact (hcp) Ti Monoclinic HfO2 c Monoclinic supercell Orthorhombic supercell vacuum vacuum b a 2 slabs of (3a,1b) m-HfO2 001 Supercell: α=90 deg, β=90, γ=90 Supercell parameters: α=90 deg, β=99.25, γ=90 Presentation name - Speaker name Fabien Fontaine-Vive

  7. Deposition of W atoms on m-HfO2 inorthorhombic supercell Why ab-initio ? * Creation / rupture of bonds (ionic, covalent, hydrogen ….) => suitable for inorganic materials (but also for organic, bio….) * Parameter-free * Very powerful method to predict properties of crystalline systems Preferable positions for metal atoms (W & Ti): Hafnium sites Relaxation engine: ab-initio (DFT) molecular dynamics combined with thermal annealing, 1-2 picosec for each deposition SIESTA code, LDA, Ceperley-Alder functional, Trouiller-Martins pseudopotentials, DZP orbitals Presentation name - Speaker name Fabien Fontaine-Vive

  8. Deposition of thin films of 4 metallic layers Ex: hcp 110 phase of Hafnium On m-HfO2 001, in monoclinic supercell, films of W and Ti are hexagonal compact-like, 110 oriented W Ti On m-HfO2 001, in orthorhombic supercell, films of W and Ti are hexagonal-diamond-like, 110 oriented Presentation name - Speaker name Fabien Fontaine-Vive

  9. Relaxing cell constraint of (W/HfO2) at 0K W hcp-like 110 on m-HfO2 001 W bcc 111 on ~ortho-mono HfO2 Phase transition W hex-dia 110 on m-HfO2 001 W hex-dia 110 on m-HfO2 001 No phase transition Presentation name - Speaker name Fabien Fontaine-Vive

  10. Cohesion energy of the bulk structure E_coh = E_bulk – E_isolated atom (eV/atom) Surface energy (J/m2) E_surf = ½ * (E_slab – E_bulk) with E_slab is the total energy of the slab Adhesion energy (work of separation, J/m2) E_int = E_stack – (E_metal film + E_ox film) Presentation name - Speaker name Fabien Fontaine-Vive

  11. Interfacial structures and energies of W/HfO2 4 types of construction, 4 types of relaxed interfaces 1 monolayer W_hd + 3 ML W_bcc 110 / m-HfO2 001 4ML W_hd 110 / m-HfO2 001 4ML W_hcp 110 / m-HfO2 001 4ML W_bcc 111 / ~o-mHfO2 001 bcc/o+14.7 bcc/o+9.9 bcc/o Stack total energy (eV) bcc/o+6.8 Ecoh bulk (eV/atom) bcc+0.77 bcc+0.47 bcc = -12.55 Surface energy of metallic films (J/m2) hcp 110=0.62 hd 110=3.07 bcc 111=4.11 bcc 110 exp=3.6 bcc 110 calc=3.8 Adhesion energy (J/m2) bcc = -2.60 -2.27 hd = -3.02 hcp = -2.50 Presentation name - Speaker name Fabien Fontaine-Vive

  12. Interfacial structures and energies of Ti/HfO2 4ML Ti_hd 110 / m-HfO2 001 4ML Ti_hcp 110 / m-HfO2 001 Stack total energy (eV) hcp/m hcp/m+1.1 Ecoh bulk (eV/atom) hcp = -7.48 hcp+0.03 Surface energy of metallic films (J/m2) hcp=2.50 hd=hcp hcp = -4.26 Adhesion energy (J/m2) hd = -3.53 Presentation name - Speaker name Fabien Fontaine-Vive

  13. Crystallographic compatibilities ? Monoclinic HfO2 c b a W hcp 110 / m-HfO2 001 W bcc 111 / o-mHfO2 W hd 110 / m-HfO2 001 Interfacial structure W / HfO2 (and Ti / mHfO2) Interfacial structure mHfO2 (001) / mHfO2 (001) Tetragonal (2Hf-O-2Hf) +Trigonal (2Hf-O-1Hf) ~Tetra (2Hf-O-2W) ~Tri (2Hf-O-1W) Tetra (2Hf-O-2W) Tri (2Hf-O-1W) Octa (4W-O-2Hf) Tri (2Hf-O-1W) Presentation name - Speaker name Fabien Fontaine-Vive Fabien Fontaine-Vive

  14. Valence Band Offset and metal work function W/HfO2 1 monolayer W_hd +3 ML W_bcc 110 / m-HfO2 001 4ML W_hcp 110 / m-HfO2 001 4ML W_hd 110 / m-HfO2 001 4ML W_bcc 111 / o-HfO2 001 Band alignement method of Van de Walle & Martin + Many-body (GW) corrections (ABINIT code) VBO exp = 3.4 eV, (P+) VBO=4.0 eV (N+) VBO=3.5 eV (P+) Wf bcc 111 exp = 4.5 eV Wf bcc 110 exp = 5.2 Vacuum work function of metallic films (eV) Wf hcp 110= 4.1 Wf hd 110=4.4 Polymorphism (or/and poly-orientation! ) of the metallic films could explain the wide range of work functions Presentation name - Speaker name Fabien Fontaine-Vive

  15. Electronic properties of W/HfO2 and Ti/HfO2 interfaces surface of isodensity at the Fermi level (HOMO density) W Ti HfO2 Charge transfer at the metal/oxide interface due to evanescent metal wavefunctions in the oxide => creation of interfacial dipole Presentation name - Speaker name Fabien Fontaine-Vive

  16. Summary • Ab-initio thermal annealing favors the apparition of meta-stable interfaces and relaxing cell dimensions favors the way back to the metal natural phase (depend on the thickness metal/oxide) • After the first atomic layer deposition => metal sites = Hafnium sites (=> ms-film in hexagonal structure, metal orientation determined by the oxide orientation) • Phase transition in metallic thin films ~ a kind of martensitic transition in FeC (fcc->bct = atomic vibrations drive the phase transition without diffusion) Presentation name - Speaker name Fabien Fontaine-Vive

  17. Thank you !! Presentation name - Speaker name Fabien Fontaine-Vive

More Related