1 / 20

Completing the Square

Completing the Square. Algebra II Professor Martin Lecture 6.19. Lecture 6.19 – Part I. When will I see this in calculus?. Perfect Square Trinomial. x. ax. ax. x. Example #1 : Convert the function into vertex form . Step 1: Step 2: . Step 3: Step 4: Vertex form. Step 5:

lumina
Download Presentation

Completing the Square

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Completing the Square Algebra II Professor Martin Lecture 6.19

  2. Lecture 6.19 – Part I

  3. When will I see this in calculus?

  4. Perfect Square Trinomial x ax ax x

  5. Example #1: Convert the function into vertex form. Step 1: Step 2: 

  6. Step 3: Step 4: Vertex form

  7. Step 5: If we want to solve…

  8. What is the key idea? x = ax ax x Completing the square  write a quadratic function as a perfect square trinomial to solve or write in vertex form

  9. Intermission

  10. Check for Understanding • Annotate your notes – record key take-aways and questions • Turn-and-talk: clarify misunderstandings

  11. In your notes, add the following questions in the cue column, next to where you have written the answer in the notes section: • What is a perfect square trinomial? • What is completing the square and why do you use it? • In the cue column next to each step, describe what is being done in each step of completing the square

  12. Lecture 6.19 – Part II

  13. How is completing the square useful for any quadratic equation? , where a, b, and c are real numbers and

  14. End of lecture 6.19

  15. Check for Understanding Write a one-sentence summary describing the derivation of the quadratic formula. Start with “The quadratic formula is derived from (comes from)….”

  16. Check for Understanding • Solve classwork problems with your partner • Ask your partner if they can answer your non-HOT questions • Record HOT questions

More Related