190 likes | 306 Views
Drawing Graphs By Computer. Graph from http://www.cs.arizona.edu/~kobourov/grip.html. MESHES. stright-line graphs embedded in R 3. Ziting (Vivien) Zhou December 7, 2011. Problem Set #4 Q1. We have already proved that any simple graph can be embedded in R 3 in such
E N D
Drawing Graphs By Computer Graph from http://www.cs.arizona.edu/~kobourov/grip.html Ziting (Vivien) Zhou
MESHES stright-line graphs embedded in R3 Ziting (Vivien) Zhou December 7, 2011 Ziting (Vivien) Zhou
Problem Set #4 Q1 We have already proved that any simple graph can be embedded in R3 in such way that each of its edges embeds as a straight line segnment. Ziting (Vivien) Zhou
3 3 1 2 2 Straight-line Graphs embedded in R3 Regular Edge: adjacent to exactly 2 faces Boundary Edge: adjacent to exactly 1 face Singular Edge: adjacent to at least 3 faces Ziting (Vivien) Zhou
Closed Mesh: mesh with no boundary edges Manifold Mesh: mesh with no singular edges Ziting (Vivien) Zhou
adding vertices straight edges Ziting (Vivien) Zhou
straight lines curve surface subdivision Ziting (Vivien) Zhou
Three Main Types of Subdivision Surfaces Catmull-Clark subdivision surface One face is split into four new faces. Ziting (Vivien) Zhou
Three Main Types of Subdivision Surfaces Doo–Sabin subdivision surface Corners are cut. Four new faces are created around every vertex. Ziting (Vivien) Zhou
Three Main Types of Subdivision Surfaces Loop subdivision surface Each triangle is divided into four subtriangles, adding new vertices in the middle of each edge. Ziting (Vivien) Zhou
smooth surface manifold mesh Any surface can be approximately regarded as a straight-line graph without singular edges embedded in R3 – a manifold mesh. Conclusion Ziting (Vivien) Zhou
Property ? Manifold Meshes polygon triangles Proof by Induction Thank You Tom!! Ziting (Vivien) Zhou
Problem Set #4 Q3 We have already proved that a graph is planar if and only if any subdivision of the graph is planar. Adding vertices inside the original edges, then forming new edges will not affect planarity Adding edges inside the original faces Ziting (Vivien) Zhou
z y x Example Mesh Face All faces are triangles. Ziting (Vivien) Zhou
The mesh face can be flattened. original graph planar subdivision Ziting (Vivien) Zhou
The surface of a polyhedron is a planar subdivision. Conclusion Every manifold mesh is planar. Ziting (Vivien) Zhou
Have Wide Applications Ziting (Vivien) Zhou
References • Visualization and mathematics III Chapter 2.2 Meshes By Hans-Christian Hege, Konrad Polthier • http://en.wikipedia.org/wiki/Graph_drawing • http://en.wikipedia.org/wiki/Computer_graphics • http://en.wikipedia.org/wiki/Subdivision_surface • http://en.wikipedia.org/wiki/Catmull%E2%80%93Clark • http://en.wikipedia.org/wiki/Doo%E2%80%93Sabin_ subdivision_surface • http://en.wikipedia.org/wiki/Loop_subdivision_surface • http://tgrip.cs.arizona.edu/ • http://www.cs.sfu.ca/~haoz/papers.html • cg.buaa.edu.cn/ComputerGraphics2011/Lecture05-Meshes.ppt • http://www.farfieldtechnology.com/products/toolbox/ mesh_simplification/ Ziting (Vivien) Zhou
The End Thank you! Ziting (Vivien) Zhou December 7, 2011 Ziting (Vivien) Zhou