110 likes | 240 Views
SAMT 2006. Doprovodné akce. LSAS 2006 SEMPS 2006 Tutoriály. LSAS 2006. 1st Workshop on Learning the Semantics of Audio Signals Audio Signal Processing and Feature Extraction Semantic Audio Description and Analysis Using fuzzy logic in handling semantic descriptions
E N D
Doprovodné akce • LSAS 2006 • SEMPS 2006 • Tutoriály
LSAS 2006 1st Workshop on Learning the Semantics of Audio Signals • Audio Signal Processing and Feature Extraction • Semantic Audio Description and Analysis • Using fuzzy logic in handling semantic descriptions • Content-Based Audio Retrieval
SEMPS 2006 1st International Workshop on Semantic-enhanced Multimedia Presentation Systems • E-Learning • Squiggle – semantic search engine (RDF/OWL knowledge base for domain, Sesame, Lucene …)
Tutoriály • The Reality of the Semantic Gap in Image Retrieval • Human Language Technology for the Semantic Annotation of Multimedia Material • Semantic Indexing and Retrieval of Video
SAMT 2006 • Keynote 1: Alan Smeaton – SenseCam
SAMT 2006 • Semantic Multimedia Indexing • Image Classification using Art Colony Optimization approach (T.Piatrik)
SAMT 2006 • Multimedia Semantics • Defining Formal Semantics of MPEG-7 Profiles (R.Troncy) • MPEG-7 defined in terms of XML schema • Semantics of its elements has no formal grounding • Formalizing semantics constrains using ontologies and rules • Validation service for MPEG-7
SAMT 2006 • Trend Detection in Folksonomies (A. Hotho) • Social bookmark tools (del.icio.us, flickr) • Users are setting up lightweight conceptual structures called folksonomies (vs. personomy – tagged personal resources) • More people participate – vocabulary becomes more stable • Approach discovering topic-specific trends in folsonomies • Folk Rank algoritm – adaptation of Page Rank
SAMT2006 • Context-based region labeling approach for semantic image segmentation (T.Athanasiadis) • Graph representation of image • Ontologie • Semantic compatibility indicator • Context relevance crdm(ck) – overall relevance of concept ck to root element characterising each domain dm • Semantic watershed algoritm