1 / 14

Representation of functions by Power Series

Representation of functions by Power Series. We will use the familiar converging geometric series form to obtain the power series representations of some elementary functions. If ırı < 1 , then the power series:. The sum of such a converging geometric series is:.

lynda
Download Presentation

Representation of functions by Power Series

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Representation of functions by Power Series We will use the familiar converging geometric series form to obtain the power series representations of some elementary functions. If ırı < 1, then the power series: The sum of such a converging geometric series is: Conversely, if an elementary function is of the form: Its power series representation is: By identifying a and r, such functions can be represented by an appropriate power series.

  2. Find a geometric power series for the function: Divide numerator and denominator by 4 Make this 1 a = 3/4 r = x/4 Use a and r to write the power series.

  3. Find a geometric power series for the function: Let us obtain the interval of convergence for this power series. f(x) -4 < x < 4 Watch the graph of f(x) and the graph of the first four terms of the power series. The convergence of the two on (-4, 4) is obvious.

  4. Find a geometric power series centered at c = -2 for the function: The power series centered at c is: Divide numerator and denominator by 6 Make this 1 a = ½ r – c = (x + 2)/6 f(x) x = -2

  5. Find a geometric power series centered at c = 2 for the function: Add 4 to compensate for subtracting 4 Since c = 2, this x has to become x – 2 Divide by 3 to make this 1 Make this – to bring it to standard form

  6. Find a geometric power series centered at c = 2 for the function: This series converges for: x = 2

  7. Find a geometric power series centered at c = 0 for the function: We first obtain the power series for 4/(4 + x) and then replace x by x2 Replace x by x2 Make this – to bring it to standard form f(x)

  8. Find a geometric power series centered at c = 0 for the function: We obtain power series for 1/(1 + x) and 1/(1 – x) and combine them. f(x) STOP HERE!

  9. Find a geometric power series centered at c = 0 for the function: We obtain power series for 1/(1 + x) and obtain the second derivative. Replace n by n + 2 to make index of summation n = 0

  10. Find a geometric power series centered at c = 0 for the function: We obtain power series for 1/(1 + x) and integrate it Then integrate the power series for 1/(1 – x ) and combine both.

  11. Find a geometric power series centered at c = 0 for the function: When x = 0, we have 0 = 0 + c c = 0

  12. Find a geometric power series centered at c = 0 for f(x) = ln(x2 + 1) We obtain the power series for this and integrate. f(x) c = 0 When x = 0, we have 0 = 0 + c -1 < x < 1

  13. Find a power series for the function f(x) = arctan 2x centered at c = 0 We obtain the power series for this and integrate. Replace x by 4x2

  14. Find a power series for the function f(x) = arctan 2x centered at c = 0 f(x) = arctan 2x -0.5 -0.5 When x = 0, arctan 2x = 0 0 = 0 + c c = 0

More Related