1 / 12

Given: RQ  RT PR  UR Prove: ∆RUT  ∆RPQ

P. Q. R. U. Given: RQ  RT PR  UR Prove: ∆RUT  ∆RPQ . T. P. Q. 1. R. 2. U. Given: RQ  RT PR  UR Prove: ∆RUT  ∆RPQ . T. RQ  RT. given. ∆RUT  ∆RPQ. PR  UR. SAS. given.  1  2. Vert  Thm. E. 2. 1. 4. 3. F. H.

lynsey
Download Presentation

Given: RQ  RT PR  UR Prove: ∆RUT  ∆RPQ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. P Q R U Given: RQ  RT PR  UR Prove: ∆RUT  ∆RPQ T

  2. P Q 1 R 2 U Given: RQ  RT PR  UR Prove: ∆RUT  ∆RPQ T RQ  RT given ∆RUT  ∆RPQ PR  UR SAS given  1  2 Vert Thm

  3. E 2 1 4 3 F H Given:  1  2 3  4 Prove: ∆EFG  ∆EHG G

  4. E Given:  1  2 3  4 Prove: ∆EFG  ∆EHG 2 1 4 3 F H G  1  2 given ∆EFG  ∆EHG 3 4 ASA given EG  EG Reflexive Prop

  5. H G O T D Given: G TGO  TO Prove: ∆HOT  ∆DOG

  6. H G 2 1 O T D Given: G TGO  TO Prove: ∆HOT  ∆DOG G  T given ∆HOT  ∆DOG GO TO ASA given  1  2 Vert Thm

  7. A U C T B Given: B TUB  TA Prove: ∆CAT  ∆CUB

  8. A U 2 1 C T B Given: B TUB  TA Prove: ∆CAT  ∆CUB B  T given ∆CAT  ∆CUB UB  TA AAS given  1  2 Vert Thm

  9. E 2 1 4 3 F H Given: FG GH 3  4 Prove: ∆EFG  ∆EHG G

  10. E Given:  1  2 3  4 Prove: ∆EFG  ∆EHG 4 3 F H G FG GH given ∆EFG  ∆EHG 3 4 ASA given EG  EG Reflexive Prop

  11. I T S A Given: SI  SATA TI Prove: ∆SIT  ∆SAT

  12. I T S A Given: SI  SATA TI Prove: ∆SIT  ∆SAT SI  SA given ∆SIT  ∆SAT TA TI SSS given ST  ST Reflexive Prop

More Related