110 likes | 278 Views
Golden Music. Fibonacci numbers. The Fibonacci Numbers :. 1, 1, 2, 3, 5, 8, 13, 21, 34 a, a, ( a+a ), a+( a+a ), ( a+a ) + ( a+a+a ) etc. Term = sum of 2 preceding terms. = GOLDEN RATIO. Musical scales and Fibonnacci. 13 notes in an octave span 8 notes in an octave. Chords.
E N D
Golden Music Fibonaccinumbers
The FibonacciNumbers: • 1, 1, 2, 3, 5, 8, 13, 21, 34 • a, a, (a+a), a+(a+a), (a+a) + (a+a+a) etc. • Term = sum of 2 preceding terms = GOLDEN RATIO
Musical scales and Fibonnacci 13notes in an octave span 8notes in an octave
Chords • 1 st, 3rd and 5thnotes of octave are chord basis
Usage in classical Music Examples: • W. A. Mozart: Sonata A • L. van Beethoven: 5th Symphony • Claude Debussy: La Mer, Image Reflections in Water • Erik Satie: Sonneries de la Rose Croix • Béla Bartok: Music for Strings, Percussion and Celesta
Fibonacci in Mozart • Sonata no 1, 1st movement: 62 bars 38 bars Perfect division usingnaturalnumbers
Fibonacci in Debussy • Introductionto'Dialogue du vent et la mer' in La mer: 21 8 8 5 13 =55 bars 5 sections • Image, Reflections in Water: • Sequence of keys marked by intervals 34-21-13-8 = a descending Fibonacci sequence
Fibonacci in bartók • Ernő Lendvai • Music for strings, Percussion and Celesta, Movement 1 • Movement 3 • Other works including the golden ratio
Popular Music • Present everywhere • May not be intentional • As modern as youcan get - Erik