500 likes | 652 Views
Inventory Management I. Definitions. Inventory- A physical resource that a firm holds in stock with the intent of selling it or transforming it into a more valuable state.
E N D
Definitions • Inventory-A physical resource that a firm holds in stock with the intent of selling it or transforming it into a more valuable state. • Inventory System- A set of policies and controls that monitors levels of inventory and determines what levels should be maintained, when stock should be replenished, and how large orders should be
Inventory management • Responsible for planning and controlling inventory from the raw material stage to the customer and for production support. • Usually represent from 20% to 60% of total assets.
Inventory • Def. - A physical resource that a firm holds in stock with the intent of selling it or transforming it into a more valuable state. • Raw Materials • Works-in-Process • Finished Goods • Maintenance, Repair and Operating (MRO)
Reasons for Inventories • Improve customer service • Economies of purchasing • Economies of production • Transportation savings • Hedge against future • Unplanned shocks (labor strikes, natural disasters, surges in demand, etc.) • To maintain independence of supply chain
Reasons for Inventories • Low cost plan operation • Minimum investment
Inventory Costs Costs associated with inventory: • Item cost / purchasing cost = c • Carrying cost / Holding cost = h • Ordering cost / Set up cost = k • Cost of having too much / disposal • Cost of not having enough (shortage)
Inventory Holding Costs Category% of Value Housing (building) cost 6% Material handling 3% Labor cost 3% Opportunity/investment 11% Pilferage/scrap/obsolescence 3% Total Holding Cost 26%
Inventory Holding Costs • Capital cost • Storage cost • Risk cost - Obsolescence - Damage - Pilferage, goods lost, strayed, stolen - Deterioration
ABC Analysis • Divides on-hand inventory into 3 classes • A class, B class, C class • Basis is usually annual $ volume • $ volume = Annual demand x Unit cost • Policies based on ABC analysis • Develop class A suppliers more • Give tighter physical control of A items • Forecast A items more carefully
Classifying Items as ABC % Annual $ Usage A B C % of Inventory Items
ABC Classification Solution Stock # Vol. Cost $ Vol. % ABC 206 26,000 $ 36 $936,000 105 200 600 120,000 019 2,000 55 110,000 144 20,000 4 80,000 207 7,000 10 70,000 Total 1,316,000
Order Quantities • How much should be ordered at one time ? • When should an order be placed ?
Order Quantities • Static : - EOQ ( Economic Order Quantity ) - POQ ( Period- Order Quantity ) - EPQ ( Economic Production Quantity ) • Dynamic : - EOQ - Warner – Within ( dynamic prog.) - Silver- meal
Economic Order Quantity Assumptions • Demand rate is known and constant • No order lead time • Shortages are not allowed • Costs: • k - setup cost per order • h - holding cost per unit time
EOQ Inventory Level Q* Optimal Order Quantity Decrease Due to Constant Demand Time
EOQ Inventory Level Instantaneous Receipt of Optimal Order Quantity Q* Optimal Order Quantity Time
EOQ Inventory Level Q* Reorder Point (ROP) Time Lead Time
EOQ Inventory Level Q* Average Inventory Q/2 Reorder Point (ROP) Time Lead Time
Total Costs • Average Inventory = Q/2 • Annual Holding costs = H * Q/2 • # Orders per year = D / Q • Annual Ordering Costs = k * D/Q • Annual Total Costs = Holding + Ordering
How Much to Order? Annual Cost Holding Cost = H * Q/2 Order Quantity
How Much to Order? Annual Cost Ordering Cost =k* D/Q Holding Cost = H * Q/2 Order Quantity
How Much to Order? Total Cost = Holding + Ordering Annual Cost Order Quantity
How Much to Order? Total Cost = Holding + Ordering Annual Cost Optimal Q Order Quantity
Optimal Quantity Total Costs =
Optimal Quantity Total Costs = Take derivative with respect to Q =
Optimal Quantity Total Costs = Take derivative with respect to Q = Set equal to zero
Optimal Quantity Total Costs = Take derivative with respect to Q = Set equal to zero Solve for Q:
Optimal Quantity Total Costs = Take derivative with respect to Q = Set equal to zero Solve for Q:
A Question: • If the EOQ is based on so many horrible assumptions that are never really true, why is it the most commonly used ordering policy?
Benefits of EOQ • Profit function is very shallow • Even if conditions don’t hold perfectly, profits are close to optimal • Estimated parameters will not throw you off very far
Quantity Discounts • How does this all change if price changes depending on order size? • Explicitly consider price: v = price, r = discount price
Discount Example D = 10,000 k= $20 r = 20% Price Quantity EOQ v = 5.00 Q < 500 633 4.50 501-999 666 3.90 Q >= 1000 716
Discount Pricing Total Cost Price 1 Price 2 Price 3 X 633 X 666 X 716 Order Size 500 1,000
Discount Pricing Total Cost Price 1 Price 2 Price 3 X 633 X 666 X 716 Order Size 500 1,000
Discount Example Order 666 at a time: Hold 666/2 * 4.50 * 0.2= $ 299.70 Order 10,000/666 * 20 = $ 300.00 Mat’l 10,000*4.50 =$45,000.00 45,599.70 =$45.599.00 Order 1,000 at a time: Hold 1,000/2 * 3.90 * 0.2= $390.00 Order 10,000/1,000 * 20 = $200.00 Mat’l 10,000*3.90 = $39,000.00 39,590.00
Discount Model 1. Compute EOQ for each price 2. Is EOQ ‘realizeable’? (is Q in range?) If EOQ is too large, use lowest possible value. If too small, ignore. 3. Compute total cost for this quantity 4. Select quantity/price with lowest total cost.
Period-Order Quantity • Minimize the total cost of ordering and carrying inventory and is based on assumption that demand is uniform. • POQ = EOQ / average weekly usage
Period-Order Quantity Example : EOQ = 2800 units, and the annual usage is 52,000 units. What is POQ ? Average weekly usage = 52000 / 52 = 1000 per week POQ = 2800/ 1000 = 2.8 weeks - = 3 weeks.
EPQ Persediaan diterima secara bertahap sepanjang suatu perioda waktu Persediaan diisi kembali Persediaan dikosongkan Max Tingkat persediaan t 2t waktu RO/XVI/14
R = jumlah produksi per tahun r = jumlah produksi per hari = R/365 D = jumlah permintaan per tahun d = jumlah permintaan per hari = d = D / 365 Agar persediaan mencapai Q, dibutuhkan Q/r hari Selama Q/r hari, jumlah permintaan = Q/r . d Persediaan maksimal = Q - Q/r . d Rata rata persediaan maksimal = ½ ( Q – Q/ r d )= Q/2 ( 1 – d/r )
Total biaya pemeliharaan = Cc. Q/2 ( 1 – d/r ) Total biaya persediaan tahunan = Tc= Co D/Q + Cc Q/2 ( 1- d/r ) Q optimal : Total biaya persediaan tahunan :
Model Dinamis EOQ • Model EOQ statis didasarkan pada asumsi tingkat permintaan diketahui dan relatif konstan. • Jika permintaan tidak konstan (bervariasi) maka bisa dengan pendekatan EOQ, Wagner-Within, atau Silver-Meal.
Ukuran Persediaan • Inventory turnover rate, seberapa cepat produk mengalir relatif terhadap jumlah yang tersimpan sebagai persediaan Misal perusahaan menjual 150 jenis produk, nilai persediaan rata-rata Rp. 3 milyar. Penjualan setahun Rp. 40 milyar dengan margin 25%. Berarti persediaan yang terjual dalam setahun Rp. 30 milyar, sehingga tingkat perputaran adalah 10 kali dalam setahun.
Ukuran Persediaan • Inventory days of supply, rata-rata jumlah hari suatu perusahaan bisa beroperasi dengan jumlah persediaan yang dimiliki. Misal perusahaan beroperasi 300 hari dalam setahun, maka nilai persediaan yang terjual perhari = 30 milyar / 300 hari = 0.1 milyar. Jadi persediaan senilai Rp. 3 milyar dapat digunakan selama 3/0.1 = 30 hari kerja.
Ukuran Persediaan • Fill rate, persentase jumlah item yang tersedia saat diminta pelanggan. • Fill rate 97% berarti kemungkinan 3% dari item yang diminta oleh pelanggan tidak tersedia.