1 / 37

Gráficas de Control por Atributos

Gráficas de Control por Atributos. Profesor Walter L ópez. UCL. Avg. LCL. Gráficas de Control Por Atributos. Introducción Las Gráficas de Control son gráficas utilizadas para estudiar como el proceso cambia a través del tiempo.

mab
Download Presentation

Gráficas de Control por Atributos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gráficas de Control por Atributos Profesor Walter López

  2. UCL Avg LCL Gráficas de Control Por Atributos Introducción • Las Gráficas de Control son gráficas utilizadas para estudiar como el proceso cambia a través del tiempo. • Se gráfica el promedio como la línea central y los límites de control superior e inferior que son permitidos en el proceso. • Estos límites se determinan con la data del proceso. • Existen cuatro tipos de Gráficas de Control: n, np, c & u.

  3. Gráficas de Control Por Atributos • Objetivos • Identificar los diferentes tipos de Gráficas de Control • Definir las reglas básicas a seguir para la elección, construcción e interpretación de las Gráficas de Control por Atributos • Resaltar las situaciones en que pueden utilizarse las gráficas de control • Indicar algunas Ventajas y Desventajas de las Gráficas de Control • Mostrar ejemplos de cada una de las Gráficas de Control por Atributos

  4. Gráficas de Control Por Atributos • Glosario • Atributos • Data que se puede clasificar y contar • Tipos • Cantidad de defectos por unidad –”Nonconformities” • Cantidad de unidades defectuosas –”Nonconforming” • Gráficas de control Gráfica comparación cronológica (hora a hora, día a día) de las características de calidad reales del producto, parte o unidad, con límites que reflejan la capacidad de producirla de acuerdo con la experiencia de las características de calidad de la unidad.

  5. Gráficas de Control Por Atributos • Proceso en control • Método visual para monitorear un proceso- se relaciona a la ausencia de causas especiales en el proceso. • Gráfica c • Número de defectos por unidad • Gráfica p • Porcentaje de fracción defectiva • Gráfica u • Proporción de defectos • Gráfica np • Número de unidades defectiuosas por muestra constante

  6. Gráficas de Control Por Atributos • Límites de control • Son calculados de la data obtenida del proceso • Límite superior • Valor máximo en el cual el proceso se encuentra en control • Límite inferior • Valor mínimo en el cual el proceso se encuentra en control. • Línea central • Es el promedio del número de defectos

  7. Gráficas de Control Por Atributos Origen • El control estadístico de la calidad surge luego de la Segunda Guerra Mundial. • Las gráficas de control estadístico fueron propuestas por Walter A. Shewart en el 1920.

  8. Gráficas de Control Por Atributos Utilidad • La función primaria de una Gráfica de Control es mostrar el comportamiento de un proceso. • Identificar la existencia de causas de variación especiales (proceso fuera de control). • Monitorear las variables claves en un proceso de manera preventiva. • Indicar cambios fundamentales en el proceso.

  9. Gráficas de Control Por Atributos • Ventajas • Resume varios aspectos de la calidad del producto; es decir si es aceptable o no • Son fáciles de entender • Provee evidencia de problemas de calidad

  10. Gráficas de Control Por Atributos Desventajas • Interpretación errónea por errores de los datos o los cálculos utilizados • El hecho de que un proceso se mantega bajo control no significa que sea un buen proceso, puede estar produciendo constantemente un gran número de no conformidades. • Controlar una característica de un proceso no significa necesariamente controlar el proceso. Si no se define bien la información necesaria y las características del proceso que deben ser controladas, tendremos interpretaciones erróneas debido a informaciones incompletas.

  11. Gráficas de Control Por Atributos • Gráfica p • Representa el porcentaje de fracción defectiva • Tamaño de muestra (n) varía. • Principales objetivos • Descubrir puntos fuera de control • Proporcionar un criterio para juzgar si lotes sucesivos pueden considerarse como representativos de un proceso • Puede influir en el criterio de aceptación.

  12. Gráficas de Control Por Atributos • Gráfica np • Se utiliza para graficar las unidades disconformes • Tamaño de muestra es constante • Principales objetivos: • Conocer las causas que contribuyen al proceso • Obtener el registro histórico de una o varias características de una operación con el proceso productivo.

  13. Gráficas de Control Por Atributos • Gráfica c • Estudia el comportamiento de un proceso considerando el número de defectos encontrados al inspeccionar una unidad de producción • El artículo es aceptable aunque presente cierto número de defectos. • La muestra es constante • Principales objetivos • Reducir el costo relativo al proceso • Determinar que tipo de defectos no son permitidos en un producto

  14. Gráficas de Control Por Atributos • Gráfica u • Puede utilizarse como: • Sustituto de la gráfica c cuando el tamaño de la muestra (n) varía

  15. Construcción- Gráfica de Control por Atributos Elección del tipo de gráfica Paso 1: Establecer los objetivos del control estadístico del proceso • La finalidad es establecer qué se desea conseguir con el mismo. Paso 2: Identificar la característica a controlar • Es necesario determinar qué característica o atributo del producto/servicio o proceso se van a controlar para conseguir satisfacer las necesidades de información establecidas en el paso anterior.

  16. Construcción… Paso 3: Determinar el tipo de Gráfica de Control que es conveniente utilizar • Conjugando aspectos como: • Tipo de información requerida. • Características del proceso. • Características del producto. • Nivel de frecuencia de las unidades no conformes o disconformidades.

  17. Construcción… Paso 4: Elaborar el plan de muestreo (Tamaño de muestra, frecuencia de maestreo y número de muestras) • Las Gráficas de Control por Atributos requieren generalmente tamaños demuestras grandes para poder detectar cambios en los resultados. • Para que el gráfico pueda mostrar pautas analizables, el tamaño de muestra, será lo suficientemente grande (entre 50 y 200 unidades e incluso superior) para tener varias unidades no conformes por muestra, de forma que puedan evidenciarse cambios significativamente favorables (por ejemplo, aparición de muestras con cero unidades no conformes). • El tamaño de cada muestra oscilará entre +/- 20% respecto al tamaño medio de las muestras • n = (n^ + n2 + ... + nN) / N N = Número de muestras • La frecuencia de muestreo será la adecuada para detectar rápidamente loscambios y permitir una realimentación eficaz. • El periodo de recogida de muestras debe ser lo suficientemente largo comopara recoger todas las posibles causas internas de variación del proceso. • Se recogerán al menos 20 muestras para proporcionar una prueba fiable de estabilidad en el proceso.

  18. Construcción… Paso 5: Recoger los datos según el plan establecido • Se tendrá un especial cuidado de que la muestra sea aleatoria y representativa de todo el periodo de producción o lote del que se extrae. • Cada unidad de la muestra se tomará de forma que todas las unidades del periodo de producción o lote tengan la misma probabilidad de ser extraídas. (Toma de muestras al azar). • Se indicarán en las hojas de recogida de datos todas las informaciones y circunstancias que sean relevantes en la toma de los mismos.

  19. Construcción… Paso 6: Calcular la fracción de unidades • Para cada muestra se registran los siguientes datos: • El número de unidades inspeccionadas "n". • El número de unidades no conformes. • La fracción de unidades no conformes • El número de defectos en una pieza • La fraccion de defectos por pieza

  20. Construcción… Paso 7: Calcular los Límites de Control

  21. Construcción… Paso 8: Definir las escalas de la gráfica • El eje horizontal representa el número de la muestra en el orden en que ha sido tomada. • El eje vertical representa los valores de la fracción de unidades • La escala de este eje irá desde cero hasta dos veces la fracción de unidades no conformes máxima.

  22. Construcción… Paso 9: Representar en el gráfico la Línea Central y los Límites de Control • Línea Central • Marcar en el eje vertical, correspondiente al valor de la fracción • Línea de Control Superior • Marcar en el eje vertical el valor de UCL. A partir de este punto trazar una recta horizontal discontinua (a trazos). Identificarla con UCL. • Límite de Control Inferior • Marcar en el eje vertical el valor de LCL. A partir de este punto trazar una recta horizontal discontinua (a trazos). Identificarla con LCL. • Nota: Usualmente la línea que representa el valor central se dibuja de color azul y las líneas correspondientes a los límites de control de color rojo. Cuando LCL es cero, no se suele representar en la gráfica.

  23. Construcción… Paso 10: Incluir los datos pertenecientes a las muestras en la gráfica • Representar cada muestra con un punto, buscando la intersección entre el número de la muestra (eje horizontal) y el valor de su fracción de unidades no conformes (eje vertical). • Unir los puntos representados por medio de trazos rectos.

  24. Construcción… Paso 11: Comprobación de los datos de construcción de la Gráfica de Control • Se comprobará que todos los valores de la fracción de unidades de las muestras utilizadas para la construcción de la gráfica correspondiente están dentro de sus Límites de Control. • LCL < gráfica < UCL • Si esta condición no se cumple para alguna muestra, esta deberá ser desechada para el cálculo de los Límites de Control. • Se repetirán todos los cálculos realizados hasta el momento, sin tener en cuenta los valores de las muestras anteriormente señaladas. • Este proceso se repetirá hasta que todas las muestras utilizadas para el cálculo de los Límites de Control muestren un proceso dentro de control. • Los Límites, finalmente así obtenidos, son los definitivos que se utilizarán para la construcción de las Gráficas de Control.

  25. Construcción… Paso 12: Análisis y resultados • La Gráfica de Control, resultado de este proceso de construcción, se utilizará para el control habitual del proceso.

  26. Interpretación- Gráfica de Control por Atributos Identificación de causas especiales o asignables • Pautas de comportamiento que representan cambios en el proceso: • Un punto exterior a los límites de control. • Se estudiará la causa de una desviación del comportamiento tan fuerte. • Dos puntos consecutivos muy próximos al límite de control. • La situación es anómala, estudiar las causas de variación. • Cinco puntos consecutivos por encima o por debajo de la línea central. • Investigar las causas de variación pues la media de los cinco puntos indica una desviación del nivel de funcionamiento del proceso. • Fuerte tendencia ascendente o descendente marcada por cinco puntosconsecutivos. • Investigar las causas de estos cambios progresivos. • Cambios bruscos de puntos próximos a un límite de control hacia el otrolímite. • Examinar esta conducta errática.

  27. Gráficas de Control Por Atributos Ejercicio: Gráfica p

  28. Gráfica p

  29. Gráficas de Control por Atributos Ejercicio: Gráfica np

  30. Gráfica np

  31. Gráfica de Control por Atributos

  32. Gráfica u

  33. Gráfica de Control por Atributos

  34. Gráfica c

  35. Gráfica de Control por Atributos Resumen

  36. Gráficas de Control Por Atributos • Conclusión Del desarrollo de los conceptos y ejemplos se puede observar el enorme potencial que posee la utilización del Control Estadístico de la calidad como instrumento y herramienta destinada a un mejor control, una forma más eficaz de tomar decisiones en cuanto a ajustes, un método muy eficiente de fijar metas y un excepcional medio de verificar el comportamiento de los procesos.

  37. Gráficas de Control Por Atributos • Referencias • www.monografias.com • SIP I Methodology & tools training • www.gestiopoly.com • Goetsch, D. L. & Davis, S. B.; 2003. Quality Management. 4t Edition. Prentice Hall. Colaboración: Wanda I. Quijano Darin I. Vélez Burgos Verónica M. Santiago

More Related