1 / 57

Chapter 3. Continuous-wave modulation

carrier frequency. message signal. Chapter 3. Continuous-wave modulation. 3.1 Introduction modulation: the process by which some characteristic of a carrier is varied in accordance with a modulating wave(signal) 3.2 Amplitude Modulation 1. Am 1) Sinusoidal carrier wave

mac
Download Presentation

Chapter 3. Continuous-wave modulation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. carrier frequency message signal Chapter 3. Continuous-wave modulation • 3.1 Introduction • modulation: the process by which some characteristic of a carrier is varied in accordance with a modulating wave(signal) • 3.2 Amplitude Modulation • 1. Am • 1) Sinusoidal carrier wave • c(t)=Ac cos(2fct) • 2) AM signal • s(t) =Ac [1+ka m(t)] cos(2fct) m(t) baseband m(t)cos(wct) passband  cos(wct) carrier amplitude amplitude sensitivity

  2. 3) s(t) 의 envelop 이 m(t)와 똑같은 shape이 될 조건 a) | Kam(t) | < 1 for all t b) fc >> W where W is message BW

  3. BT=2W • 4) 주파수상에서의 표현 ex1) Single-Tone Modulator • message m(t)=Am cos(2fmt ) • AM s(t)=Ac [1+cos(2fm t)]cos(2fct) • Where  = kaAm ; Modulation factor • 100 = 100 kaAm ; percentage Modulation

  4. m(t) BPF[v2(t)] • 2. Switching Modulation • v1(t) = Accos(2(t)) + m(t)) • If  m(t)  Ac • v2(t)  v1(t), c(t) > 0 • 0, c(t) <0 •  v2(t)  [AC cos(2(t)) + m(t))] gTo(t) • where T0=1/fc

  5. Diode function • By Fourier series on off

  6. 3. Envelope Detector : AM radio receiver Charging time constant = (f + RS ) C For Rapid charge (f + RS )C << 1/fc Discharging time constant =

  7. 3.3 Virtues, Limitations , and Modifications of AM • 1. Virtues • 1) easy modulator: switching mod, square-law modulator • demodulator: envelop detector, square-law detector • 2) relatively cheap • 2. Limitations • 1) Wasteful of power carrier power • 2) Wasteful of BW 1/2로 줄일 수 있다. LSB와 USB가 symmetry. • 3. Modifications of AM • 1) DSB-SC modulation : no carrier • 2) VSB modulation : BW를 약 1/2로 • 3) SSB modulation : BW를 1/2로

  8. 3.4 DSB - SC Modulation • 1. DSB - SC signal

  9. s(t)=m(t) c(t) > 0 s(t)= -m(t) c(t) < 0 • 2. Ring Modulator + -

  10. M(f) w -3fc fc 3fc -fc S(f) -3fc 2W 2W • c(t) = • BPF[s(t)] =BPF[c(t)m(t)] f=fc • = m(t) • (주의점) Transformers are perfectly balanced and diodes are identical  no leakage of modulation frequency into modulator output

  11. Local Osc = + LPF • 3. Coherent detection or synchronous demodulation • frequency coherent detection

  12. f -2fc 2fc 2w 2w • Coherent Detection 특징 : perfect demodulation • but 복잡 cost • 4. Costas Receiver V(f)

  13. s(t) OSC 빠른 주파수 450 - 450 늦은 주파수 정상주파수

  14. Quadrature In-phase • 5. Quadrature-Carrier Multiplexing or QAM

  15. Key points> Correct phase & frequency •  Costas Receiver 사용 •  Send a pilot signal outside the passband of the modulated signal • Pilot : Low power sinusoidal tone whose frequency and phase are related to c(t) • Add pilot signal of small carrier • 3.5 Filtering of side-bands <Band pass filtering>

  16. H(f) f fc -fc 0 FILTER Hi(T) LPF m(t) s(t) m(t) FILTER HQ(T) -fc fc • 1.BPF의 LSB와 USB가 symmetric 할 경우 • 2. BPF의 LSB와 USB가 unsymmetric 할 경우

  17. H(f)와 HI(f) HQ(f) 간의 관계는? • 또한

  18. HI(f) : symmetric component   fc -fc +jHQ(f)  HI(f) -fc fc jHQ(f) fc • SSB & VSB

  19. HI 1 HQ 0.5 f fc-fv fc+fv fc+W fc HI 1 0.5 f fc+fv fc-fv fc-W HQ fc 3.6 Vestigial Side-Band Modulation • 1. Filtering • 1) fc를 중심으로 odd-symmetry •  LSB(or USB)의 vestige만 보냄. • 2) USB or LSB

  20. 3.58 MHz color • 2.Television Signals • 1)TV 신호의 특징 a)Video 신호가 large BW  대부분의 energy가 low-frequency에 b)수신기가 간단, cheap  use envelope detection • 2)주파수 특성

  21. due to cheap negligible distortion • 3. 0.75 MHz (25%)의 LSB를 full scale로 보내는 이유 • Envelope detection에서 waveform distortion을 줄이기 위해 • 1) Waveform distortion add carrier component to apply envelope detector • Envelop detector output • 2) m’(t)에 의한 distortion을 줄이는 방법 a) ka를 줄인다. b) Vestigial sideband의 폭을 늘인다. • 3) TV 신호에서의 해법 a) 100% percentage modulation b) 0.75MHz의 LSB

  22. 3.7 SSB • 1. 방법 : USB 나 LSB만 전송 • 2. 이유 : Message m(t)가 실수  M(f)는 conjugate symmetric • 3. 문제점 : LSB나 USB가 붙어 있을 경우 filtering이 어렵다. • 4. 적용분야 : Message spectrum이 origin에서 energy gap이 있을 때 • ex) Voice (-3400 ~ -300) (300 ~ 3400Hz)

  23. BPF m(t) USB f fc fc+W 0 -f1 f1 0 easy BPF f2 -f2 f2+f1 • 5. Pass-band에서 BPF로 구현 • BPF : highly selective filters ( 예:Crystal resonator) • Multiple modulation으로 구현

  24. HI(f) jH Q(f)  m(t) OSC s(t) -900  H.T • 6. Time Domain Description of SSB (Baseband에서 구현) • Hartley modulator

  25. LPF s(t) -900  LPF  • 7. Demodulation of SSB signal • 1) 구현 • 2) Coherent detector : both in phase & in frequency a) Low-power 의 pilot carrier를 전송 b) Highly stable oscillator 사용 still phase error • 3) Phase error 가 있을 경우 • Phase distortion Voice  insensitive to phase error  Donald Duck voice effect Music or Video  unacceptable

  26. TV f3   f5 f1 DTV f4 f2 3.8 Frequency Translation f3 = f2 + f1 f5 = f4 + f3= f4 (f2  f1) = f4(f2-f1) f4(f2+f1) • Upward • Downward • ex) f1= 0M f2= 44M  f3 = 44M f4= 66M f5 = 110M, 22M • ex) f1=110M f2= 1030M  f3 = 920M, 1140M f4= 876M  f5 = 44M, 1796M f6= 44M f7 = 0M, 88M

  27. w1 w1 w2 w2 wn wn f w1 w2 w3 wn 3.9 Frequency-Division Multiplexing • ex2) Voice BW= 4kHz, SSB • Basic Groups=12 Voice, fc=60+4nkHz. n=1~12 • Super Groups= 5Basic Groups, fc=372+48nkHz. n=1~5 • Master Group • Very Large Group

  28. <HW #3> 3.4, 3.6, 3.8, 3.16, 3.21

  29. 3.10 Angle Modulation • 1. 장점 : better discrimination against noise and interference than AM • 단점 : increased BW • 2. Basic Definitions • 1) PM • 2) FM

  30. carrier m(t) AM PM FM • 3) AM과 다른점 a) AM은 zero crossing이 주기적, PM과 FM은 비주기적 b) AM 은 envelope이 변화, PM과 FM은 constant

  31. 4) PM과 FM의 관계 : 미적분의 관계 • 4.11 Frequency Modulation • 1. FM signal • 1) 특징 : nonlinear modulation • analysis is more difficult than AM

  32. 2) FM signal

  33. (1) (2) (3) • 2. Narrow-Band Frequency Modulation • 1) • 2) < BW of Narrow band FM >  < BW of AM > = 2fm • 3) 식(1)의 구현

  34. 4) (2) (3)식의 그림상에서 비교 문제: envelope이 변한다   0.3 radians  negligible • 3. Wide-band FM • 1) FM wave

  35. FM wave

  36. 2) Properties of Bessel function. a) For n even For n odd b) For n odd c)

  37. 3) Observations. a) Spectrum, fcnfm, n=0,1,2,…... b) for small , spectrum at fc, fm  narrow-band FM c) Amplitude of carrier component J0() varies with  • example 3. • Fixed freq (fm) & varying amplitude (i, e, f) • Varing freq(fm) & fixed amplitude (i, e, f)

  38. 0.1 0.3 0.5 1.0 2.0 5.0 10.0 20.0 30.0 2 4 4 6 8 16 28 50 70 2nmax Carson’s rule 2.2 2.6 3 4 6 12 22 42 62 • 4. Transmission Bandwidth of FM signals. • 1) BW of FM의 개념. 실제 FM: infinite number of side freq. Effectively finite number of side freq. Single tone FM case. Narrow band : BW  order of 2fm Wide band : BW  order of 2f • 2) Carson’s rule Approximate BW of FM by single tone fm • 3) BW of FM the separation between the two freq beyond which none of the frequencies is greater than • 1% of the unmodulated carrier amplitude • = 2nmax fm • where nmax=largest value of integer n that satisfies the requirement

  39. 200KHz 사용 • Universal curve • 4) General case • Highest frequency W  worst case tone fm • Deviation ratio D : maximum possible amplitude   • Ex4) FM radio in US f=75KHz • W= 15KHz •  D= 75 / 15 = 5 • By carson’s rule BT=2(75+15)=180KHz • By universal curve BT= 3.275=240KHz

  40. 5. Genetation of FM signals • 1) Indirect FM • a) Crystal controlled OSC : to provide frequency stability b) Frequency multiplier c) 식.

  41. d) Freq. Multiplier 2개를 사용한 예 • Ex5). (목적) fc=100MHz, minimum of f = 75kHz • m(t) : 100Hz~15KHz audio • f1=0.1MHz, 1=0.2 radians. • 100Hz f1=20Hz • 15KHz f1=3KHz • To make minimum f=75KHz By solving & n1=75 n2=50 • 2) Direct FM • a) FM fi(t)=fc+kfm(t) • VCO로 구성(voltage controlled oscillator)   fi(t)=fc+ kfm(t) VCO m(t)

  42. b) Oscillator의 구현 예 • c(t) : (varactor or varicap) + fixed capacitance • ex) p-n junction diode in reverse bias • the larger the reverse voltage •  the smaller the capacitance c) VCO를 이용한 wide-band FM

  43. d) VCO를 이용한 FM에서 주파수 안정화를 위한 feedback scheme 가정 m(t) is zero mean LPF는 f0만 control 할 수 있도록 Narrow-band로 구현 (m(t)의 BW에 비해 Narrow하게) • 6. Demodulation of FM signals • 1) Direct Method frequency discriminator • = slope circuit + envelope detector • slope circuit

  44. s1(t) s(t) so(t) s2(t) < Balanced frequency discriminator >

  45. 2) Circuit diagram으로 구현 • 각각의 Resonator의 3-dB BW=2B 일 때 3B separation이 ideal. • 위 회로의 distortion factor a) s(t)의 spectrum이 BW=BT밖에서 완전히 0이 아니다. b) Tuned filter가 완전히 band limit되어 있지 않다. c) Tuned filter특성이 모든 FM 대역에서 완전히 linear하지 않다

  46. 7. FM Stereo Multiplexing • 1) FM stereo의 조건 a) The Tx has to operate within the allocated FM channels b) Compatible with monophonic radio receivers • 2) Multiplexed signal • m(t)=[ml(t)+mr(t)]+[ml(t)-mr(t)]cos(4fct)+Kcos(2 fct) • where fc=19KHz • pilot=19KHz: 8~9% of the peak freq. deviation. • ml+mr or ml-mr : DSB-SC • 3) 구조

  47. 3.12 PLL • 1.용도 : Synchronization, frequency division / multiplication • indirect frequency demodulation. • 2. PLL의 구조 • Locking 조건 • 다른 응용 : Coherent detection용 clock generation

More Related