1 / 46

National High Magnetic Field Laboratory

National High Magnetic Field Laboratory. at Florida State University. FT-ICR. Interpretation (One Peak/Cpd). Mass Spectrometry Advantages. Every molecule has mass!. Mass Defect as a Chromophore. Isotopes: Tracing/Quantitation. Attomoles. (m/z) max - (m/z) min. Peak Capacity =.  m 50%.

macha
Download Presentation

National High Magnetic Field Laboratory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. National High Magnetic Field Laboratory at Florida State University FT-ICR

  2. Interpretation (One Peak/Cpd) Mass Spectrometry Advantages Every molecule has mass! Mass Defect as a Chromophore Isotopes: Tracing/Quantitation Attomoles

  3. (m/z)max - (m/z)min Peak Capacity = m50%    m50% m/z (m/z)max (m/z)min

  4. Separation Method Maximum # of Components Maximum Peak Capacity HP-TLC 6 25 Isocratic LC 12 100 Gradient LC 17 200 HPLC 37 1,000 CE 37 1,000 Open Tubular GC 37 1,000 ESI FT-ICR MS 525 200,000

  5.  = = q B  h B m NMR or EMR ICR B B 

  6. Bovine Ubiquitin Image Current Differential Amplifier 0 FT 80 240 400 Time (ms) 10+ 9+ m z A  B 2 + = 8+ 1071 1072 11+ 12+ 7+ 100 150 200 250 Frequency (kHz) 10+ 9+ 8+ 11+ 12+ 7+ 600 1000 1400 1800 m/z

  7. Electrospray Ionization Heated Metal Capillary Capillary tip Taylor Cone Counter Electrode HV Adapted from:Enke, C. Anal. Chem. 1997, 69, 4885-4893.

  8. 178.08489 FT-ICR (IRMPD) QqTOF (CID) 178.08043 178.07233 178.06107 178.04 178.06 178.08 178.10 m/z + 13C1 C8H8N3O2+ m/z 178.06110 m/z 220 C7H8N5O+ m/z 178.07234 12C713C1H9N4O+ m/z 178.08044 C8H10N4O+• m/z 178.08491 Sleno et al.

  9. (Dalton) Atomic Mass Defects 0.02 2H 13C 1H 14N 0.01 15N 0 12C -0.01 16O -0.02 -0.03 31P 32S 34S -0.04 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

  10. CcHhNnSsOo (1 mDa Bins) S. Kim Rodgers 10 8 6 4 2 0 521.0 521.1 521.2 521.3 521.4 521.5 Mass

  11. CcHhNnSsOo S. Kim Rodgers (1 mDa Bins) 10 8 6 4 2 0 521.10 521.105 521.110 521.115 521.120 Mass

  12. CcHhNnSsOo S. Kim Rodgers (0.5 mDa Bins) 7 6 5 4 3 2 1 0 521.100 521.105 521.110 521.115 521.120 Mass

  13. CcHhNnSsOo +/- 100 ppb = 1 Composition per bin! (0.1 mDa Bins) 4 3 2 1 0 521.110 521.112 521.114 521.116 521.118 521.120 Mass

  14. Mass Accuracy vs. Relative Abundance (12,449 Assigned Masses) Negative-Ion APPI FT-ICR MS 100 90 S. American Crude Oil 80 70 60 Relative Abundance 50 ± 100 ppb 40 30 20 10 -2 -1 0 1 2 Mass Accuracy (ppm)

  15. Raw Diesel Feedstock 1mL Septum Injection C17H21+ C16H33+ C16H17O+ Measured Theoretical C15H13S+ 225.07326225.07325 C15H13S+ C16H17O+ 225.12733225.12739 C17H21+ 225.16375225.16378 C16H33+ 225.25769225.25768 221 225 229 300 200 250 150 m/z Rodgers Andersen White Hendrickson

  16. C8H7N Isomers + H+ .. N N + H - H+ .. .. N .. N H

  17. 300 400 500 600 700 800 900 -200 -900 -800 -600 -500 200 -700 -400 -300 m/z 17,000+ Compositionally Distinct Components Resolved by High Resolution 9.4 Tesla Electrospray FT-ICR MS Positive Ion ESI MS Negative Ion ESI MS 6,118 resolved components 11,127 resolved components Hughey Hendrickson Rodgers Qian 0 ~

  18. m2 – m1 = 3.4 mDa Expansion at m/z 492 C3 SH4 Positive ESI FT-ICR MS S. Amer. Heavy Crude Oil 11,000 Peaks 250 < m/z < 900 492.250 492.325 492.400 492.475 m/z Hughey Hendrickson Rodgers Qian 300 400 500 600 700 800 900 m/z

  19. 63 Spectral Peaks above 8 σ 62 Spectral Peaks Assigned * Not assigned 280 340 400 460 520 580 640 700 431.0 431.1 431.2 431.3 431.4 m/z m/z APPI FT-ICR MS 8 σ *

  20. 0.5 Crude Oil B 0.4 0.3 Increasing DBE 0.2 0.1 0.0 Kendrick Mass Defect 0.00 0.07 0.5 0.4 0.3 Increasing DBE 0.2 0.1 Asphaltenes Deposit B 0.0 300 400 500 600 700 800 900 Nominal Kendrick Mass 0.00 0.03

  21. Negative-Ion ESI FT-ICR MS Canola Oil Olive Oil Wu Rodgers Soybean Oil 350 450 550 650 250 m/z

  22. C18:1 Fatty Acids Canola Oil C18:2 C18:0 C18:3 C18:1 Olive Oil C18:2 C18:0 C18:2 Wu Rodgers Soybean Oil C18:1 C18:0 C18:3 277 279 281 283 285 278 280 282 284 m/z

  23. C54:6 Triacylglycerols Canola Oil C54:5 Olive Oil C54:7 Wu Rodgers Soybean Oil C54:8 885 875 880 890 m/z

  24. Negative-Ion ESI of Olive Oil C23H35O9- C26H31O7- C30H47O3- C22H31O10- C27H35O6- C22H32O8P- C24H39O8- C25H27O8- C29H43O4- Wu Rodgers C25H43O7- C21H28O9P- 455.2 455.3 455.4 455.5 455.1 m/z

  25. Acidic Species Detected by Negative-Ion ESI 16 Canola Oil 12 8 4 0 16 Olive Oil 12 8 4 0 60 Wu Rodgers Soybean Oil 40 20 0 O2 O3 O4 O5 O6 O7 O9 O8 O10 P S N

  26. Tocopherols in Soybean Oil Negative-Ion ESI Wu Rodgers C28H47O2- (β, γ-tocopherol) C29H49O2- (α-tocopherol) C27H45O2- (δ-tocopherol) 429.2 429.3 429.4 429.1 m/z 400 405 410 415 420 425 430 435 m/z

  27. C28H47O2- (β, γ-tocopherol) Canola Oil Olive Oil C19H27O10- C20H31O9- Wu Rodgers Soybean Oil 415.3 415.1 415.2 415.4 415.5 415.6 m/z

  28. Positive-Ion ESI FT-ICR MS C41H69O6+ Soybean Oil Wu Rodgers C45H69O3+ C46H73O2+ C43H77O4+ C42H73O5+ C47H77O+ C41H70O4P+ 657.50 657.54 657.58 657.62 m/z

  29. C36:2 C36:3 Diacylglycerols Canola Oil C36:1 Olive Oil C36:4 Wu Rodgers Soybean Oil C36:5 610 600 605 m/z

  30. Relative Abundance % 100 Fatty Acids 80 60 40 C18:2 20 C18:3 282 Pure Olive 278 Wu Rodgers Pure Soybean 274

  31. Relative Abundance % 100 80 Triacylglycerols 60 40 C54:5 C54:6 20 C54:7 884 880 Pure Olive Oil 876 Wu Rodgers Pure Soybean Oil

  32. O H O O H O H O H GM1a NeuAc = N-Acetylneuraminic Acid (Sialic Acid) HexNAc = N-Acetylhexosamine Hex = Hexose GM1b

  33. O o HN o o o O o o o o ’) ’) M-( M-( OH O ’ ’ HN O OH ’(from 0,2) ’’ ’) ’) M-( M-( ’) M-( ) M-( ) ) M-( M-( )’ ’ ’ M- M-( ) M-( ’) M-( 100 ms IRMPD of GM1 [M+2H]2+ 200 ms IRMPD of GM1 [M+2H] 2+ Ceramide’ Ceramide 200 400 600 800 1000 1200 1400 m/z

  34. o o o o o o o o M-( M- )’ ’ O O HN HN O O ’) M-( OH OH ) M-( ’) M-( ’ M-( ’) ’) ’ ’ M-( [M-2H]2- ECD of GM1 ’(from 0,2) ~1.5~ Ceramide’’ Sphingosine-N Ceramide’ Ceramide 200 400 600 800 1000 1200 1400 m/z

  35. O O HN HN O O OH OH 1 Sugar 0.8 Lipid 0.6 M-x 0.4 Unknown 0.2 Hydrocarbon 0 Amino Acid 0 500 1000 1500 Peptides from Neutral Mass Digest and Standards Sialic Acid Hexose and/or Mass Defect HexNAc McFarland

  36. Inlet Nebulizer Nebulizing Gas Vaporizer UV Lamp Drying Gas hn Capillary Atmospheric Pressure Photoionization FT-ICR MS To FT-ICR MS http://www.chem.agilent.com

  37. - e- M+• M APPI [M+H]+ + H+ Nitrogen Rule McLafferty, Interpretation of Mass Spectra, 1993

  38. 448.290 448.295 448.300 448.305 448.310 m/z Why Ultrahigh Mass Resolving Power? South American Crude Oil 3.4 mDa C3 versus SH4 4.5 mDa13C versus CH 4.5 mDa 3.4 mDa [C30H41N1S1 + H]+ [M+H]+ [C33H37N1 + H]+ Purcell Rodgers M+• [C32H37N113C1]+ •

  39. Ion Energy Number of Ions Upper Mass Limit Ion Trapping Period Highest Non-Coalesced Mass 21 T 21 T Mass Resolving Power Scan Speed (LC/MS) 14.5 T (2004) 9.4 T (1995) 14.5 T 7 T (1985) 9.4 T 7 T 21 21 0 0 B (tesla) B (tesla)

  40. Nanomate LTQ Broadband FT ICR MS 785.842 Hendrickson Mackay Quinn Glu-Fib, 1 pmol/μL 786.343 m/Dm50% = 914,000 External Calibration Mass Accuracy: 50 ppb 6 0 4 2 Time (s) 786.845 788 785 790 784 787 789 783 786 m/z

  41. Magnitude Ubiquitin [M+10H]10+ Absorption Beu Blakney Hendrickson Quinn 857 858 m/z

  42. Ion Energy Number of Ions Upper Mass Limit Ion Trapping Period Highest Non-Coalesced Mass 21 T 20 T Mass Resolving Power $?? M Scan Speed (LC/MS) (2009) NHMFL KBSI PNNL 14.5 T $1.5 M (2004) 9.4 T $0.5 M (1995) 14.5 T 7 T $0.2 M (1985) 9.4 T 7 T 20 21 0 0 B (tesla) B (tesla)

  43. Support for ICR at NHMFL Baker Petrolite NSF Dow NIH ExxonMobil Florida State U. Fluor Canada Oil Phase DBR STINT (Sweden) ThermoElectron KBSI (Korea) Saudi Aramco Schlumberger-Doll UnoCal

  44. 700 Worldwide FT-ICR MS Systems 600 500 NHMFL ICR Program Starts 400 300 200 100 0 1976 1980 1984 1988 2000 2004 1992 1996

More Related