460 likes | 702 Views
National High Magnetic Field Laboratory. at Florida State University. FT-ICR. Interpretation (One Peak/Cpd). Mass Spectrometry Advantages. Every molecule has mass!. Mass Defect as a Chromophore. Isotopes: Tracing/Quantitation. Attomoles. (m/z) max - (m/z) min. Peak Capacity =. m 50%.
E N D
National High Magnetic Field Laboratory at Florida State University FT-ICR
Interpretation (One Peak/Cpd) Mass Spectrometry Advantages Every molecule has mass! Mass Defect as a Chromophore Isotopes: Tracing/Quantitation Attomoles
(m/z)max - (m/z)min Peak Capacity = m50% m50% m/z (m/z)max (m/z)min
Separation Method Maximum # of Components Maximum Peak Capacity HP-TLC 6 25 Isocratic LC 12 100 Gradient LC 17 200 HPLC 37 1,000 CE 37 1,000 Open Tubular GC 37 1,000 ESI FT-ICR MS 525 200,000
= = q B h B m NMR or EMR ICR B B
Bovine Ubiquitin Image Current Differential Amplifier 0 FT 80 240 400 Time (ms) 10+ 9+ m z A B 2 + = 8+ 1071 1072 11+ 12+ 7+ 100 150 200 250 Frequency (kHz) 10+ 9+ 8+ 11+ 12+ 7+ 600 1000 1400 1800 m/z
Electrospray Ionization Heated Metal Capillary Capillary tip Taylor Cone Counter Electrode HV Adapted from:Enke, C. Anal. Chem. 1997, 69, 4885-4893.
178.08489 FT-ICR (IRMPD) QqTOF (CID) 178.08043 178.07233 178.06107 178.04 178.06 178.08 178.10 m/z + 13C1 C8H8N3O2+ m/z 178.06110 m/z 220 C7H8N5O+ m/z 178.07234 12C713C1H9N4O+ m/z 178.08044 C8H10N4O+• m/z 178.08491 Sleno et al.
(Dalton) Atomic Mass Defects 0.02 2H 13C 1H 14N 0.01 15N 0 12C -0.01 16O -0.02 -0.03 31P 32S 34S -0.04 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
CcHhNnSsOo (1 mDa Bins) S. Kim Rodgers 10 8 6 4 2 0 521.0 521.1 521.2 521.3 521.4 521.5 Mass
CcHhNnSsOo S. Kim Rodgers (1 mDa Bins) 10 8 6 4 2 0 521.10 521.105 521.110 521.115 521.120 Mass
CcHhNnSsOo S. Kim Rodgers (0.5 mDa Bins) 7 6 5 4 3 2 1 0 521.100 521.105 521.110 521.115 521.120 Mass
CcHhNnSsOo +/- 100 ppb = 1 Composition per bin! (0.1 mDa Bins) 4 3 2 1 0 521.110 521.112 521.114 521.116 521.118 521.120 Mass
Mass Accuracy vs. Relative Abundance (12,449 Assigned Masses) Negative-Ion APPI FT-ICR MS 100 90 S. American Crude Oil 80 70 60 Relative Abundance 50 ± 100 ppb 40 30 20 10 -2 -1 0 1 2 Mass Accuracy (ppm)
Raw Diesel Feedstock 1mL Septum Injection C17H21+ C16H33+ C16H17O+ Measured Theoretical C15H13S+ 225.07326225.07325 C15H13S+ C16H17O+ 225.12733225.12739 C17H21+ 225.16375225.16378 C16H33+ 225.25769225.25768 221 225 229 300 200 250 150 m/z Rodgers Andersen White Hendrickson
C8H7N Isomers + H+ .. N N + H - H+ .. .. N .. N H
300 400 500 600 700 800 900 -200 -900 -800 -600 -500 200 -700 -400 -300 m/z 17,000+ Compositionally Distinct Components Resolved by High Resolution 9.4 Tesla Electrospray FT-ICR MS Positive Ion ESI MS Negative Ion ESI MS 6,118 resolved components 11,127 resolved components Hughey Hendrickson Rodgers Qian 0 ~
m2 – m1 = 3.4 mDa Expansion at m/z 492 C3 SH4 Positive ESI FT-ICR MS S. Amer. Heavy Crude Oil 11,000 Peaks 250 < m/z < 900 492.250 492.325 492.400 492.475 m/z Hughey Hendrickson Rodgers Qian 300 400 500 600 700 800 900 m/z
63 Spectral Peaks above 8 σ 62 Spectral Peaks Assigned * Not assigned 280 340 400 460 520 580 640 700 431.0 431.1 431.2 431.3 431.4 m/z m/z APPI FT-ICR MS 8 σ *
0.5 Crude Oil B 0.4 0.3 Increasing DBE 0.2 0.1 0.0 Kendrick Mass Defect 0.00 0.07 0.5 0.4 0.3 Increasing DBE 0.2 0.1 Asphaltenes Deposit B 0.0 300 400 500 600 700 800 900 Nominal Kendrick Mass 0.00 0.03
Negative-Ion ESI FT-ICR MS Canola Oil Olive Oil Wu Rodgers Soybean Oil 350 450 550 650 250 m/z
C18:1 Fatty Acids Canola Oil C18:2 C18:0 C18:3 C18:1 Olive Oil C18:2 C18:0 C18:2 Wu Rodgers Soybean Oil C18:1 C18:0 C18:3 277 279 281 283 285 278 280 282 284 m/z
C54:6 Triacylglycerols Canola Oil C54:5 Olive Oil C54:7 Wu Rodgers Soybean Oil C54:8 885 875 880 890 m/z
Negative-Ion ESI of Olive Oil C23H35O9- C26H31O7- C30H47O3- C22H31O10- C27H35O6- C22H32O8P- C24H39O8- C25H27O8- C29H43O4- Wu Rodgers C25H43O7- C21H28O9P- 455.2 455.3 455.4 455.5 455.1 m/z
Acidic Species Detected by Negative-Ion ESI 16 Canola Oil 12 8 4 0 16 Olive Oil 12 8 4 0 60 Wu Rodgers Soybean Oil 40 20 0 O2 O3 O4 O5 O6 O7 O9 O8 O10 P S N
Tocopherols in Soybean Oil Negative-Ion ESI Wu Rodgers C28H47O2- (β, γ-tocopherol) C29H49O2- (α-tocopherol) C27H45O2- (δ-tocopherol) 429.2 429.3 429.4 429.1 m/z 400 405 410 415 420 425 430 435 m/z
C28H47O2- (β, γ-tocopherol) Canola Oil Olive Oil C19H27O10- C20H31O9- Wu Rodgers Soybean Oil 415.3 415.1 415.2 415.4 415.5 415.6 m/z
Positive-Ion ESI FT-ICR MS C41H69O6+ Soybean Oil Wu Rodgers C45H69O3+ C46H73O2+ C43H77O4+ C42H73O5+ C47H77O+ C41H70O4P+ 657.50 657.54 657.58 657.62 m/z
C36:2 C36:3 Diacylglycerols Canola Oil C36:1 Olive Oil C36:4 Wu Rodgers Soybean Oil C36:5 610 600 605 m/z
Relative Abundance % 100 Fatty Acids 80 60 40 C18:2 20 C18:3 282 Pure Olive 278 Wu Rodgers Pure Soybean 274
Relative Abundance % 100 80 Triacylglycerols 60 40 C54:5 C54:6 20 C54:7 884 880 Pure Olive Oil 876 Wu Rodgers Pure Soybean Oil
O H O O H O H O H GM1a NeuAc = N-Acetylneuraminic Acid (Sialic Acid) HexNAc = N-Acetylhexosamine Hex = Hexose GM1b
O o HN o o o O o o o o ’) ’) M-( M-( OH O ’ ’ HN O OH ’(from 0,2) ’’ ’) ’) M-( M-( ’) M-( ) M-( ) ) M-( M-( )’ ’ ’ M- M-( ) M-( ’) M-( 100 ms IRMPD of GM1 [M+2H]2+ 200 ms IRMPD of GM1 [M+2H] 2+ Ceramide’ Ceramide 200 400 600 800 1000 1200 1400 m/z
o o o o o o o o M-( M- )’ ’ O O HN HN O O ’) M-( OH OH ) M-( ’) M-( ’ M-( ’) ’) ’ ’ M-( [M-2H]2- ECD of GM1 ’(from 0,2) ~1.5~ Ceramide’’ Sphingosine-N Ceramide’ Ceramide 200 400 600 800 1000 1200 1400 m/z
O O HN HN O O OH OH 1 Sugar 0.8 Lipid 0.6 M-x 0.4 Unknown 0.2 Hydrocarbon 0 Amino Acid 0 500 1000 1500 Peptides from Neutral Mass Digest and Standards Sialic Acid Hexose and/or Mass Defect HexNAc McFarland
Inlet Nebulizer Nebulizing Gas Vaporizer UV Lamp Drying Gas hn Capillary Atmospheric Pressure Photoionization FT-ICR MS To FT-ICR MS http://www.chem.agilent.com
- e- M+• M APPI [M+H]+ + H+ Nitrogen Rule McLafferty, Interpretation of Mass Spectra, 1993
448.290 448.295 448.300 448.305 448.310 m/z Why Ultrahigh Mass Resolving Power? South American Crude Oil 3.4 mDa C3 versus SH4 4.5 mDa13C versus CH 4.5 mDa 3.4 mDa [C30H41N1S1 + H]+ [M+H]+ [C33H37N1 + H]+ Purcell Rodgers M+• [C32H37N113C1]+ •
Ion Energy Number of Ions Upper Mass Limit Ion Trapping Period Highest Non-Coalesced Mass 21 T 21 T Mass Resolving Power Scan Speed (LC/MS) 14.5 T (2004) 9.4 T (1995) 14.5 T 7 T (1985) 9.4 T 7 T 21 21 0 0 B (tesla) B (tesla)
Nanomate LTQ Broadband FT ICR MS 785.842 Hendrickson Mackay Quinn Glu-Fib, 1 pmol/μL 786.343 m/Dm50% = 914,000 External Calibration Mass Accuracy: 50 ppb 6 0 4 2 Time (s) 786.845 788 785 790 784 787 789 783 786 m/z
Magnitude Ubiquitin [M+10H]10+ Absorption Beu Blakney Hendrickson Quinn 857 858 m/z
Ion Energy Number of Ions Upper Mass Limit Ion Trapping Period Highest Non-Coalesced Mass 21 T 20 T Mass Resolving Power $?? M Scan Speed (LC/MS) (2009) NHMFL KBSI PNNL 14.5 T $1.5 M (2004) 9.4 T $0.5 M (1995) 14.5 T 7 T $0.2 M (1985) 9.4 T 7 T 20 21 0 0 B (tesla) B (tesla)
Support for ICR at NHMFL Baker Petrolite NSF Dow NIH ExxonMobil Florida State U. Fluor Canada Oil Phase DBR STINT (Sweden) ThermoElectron KBSI (Korea) Saudi Aramco Schlumberger-Doll UnoCal
700 Worldwide FT-ICR MS Systems 600 500 NHMFL ICR Program Starts 400 300 200 100 0 1976 1980 1984 1988 2000 2004 1992 1996