170 likes | 260 Views
Hierarchical Line Integration TVCG Papers. Marcel Hlawatsch , Filip Sadlo, Daniel Weiskopf University of Stuttgart, Germany. Motivation. Dense sets of trajectories required for, e.g.,. delocalized 2 < -5000. [Fuchs et al. 2008]. Line integral convolution (LIC).
E N D
Hierarchical Line IntegrationTVCG Papers Marcel Hlawatsch, Filip Sadlo, Daniel Weiskopf University of Stuttgart, Germany
Motivation Dense sets of trajectories required for, e.g., delocalized 2 < -5000 [Fuchs et al. 2008] Line integral convolution (LIC) Finite-Time Lyapunov Exponent (FTLE) Other Lagrangian concepts(delocalized vortex criteria)
Motivation • Integration of many trajectories is expensive! • Different trajectories pass same region • Reuse parts of trajectories • Fast LIC[Stalling and Hege 1995, 1998] • Shift convolution kernel on long trajectories • Collect LIC contributions at pixels • Grid Advection for FTLE computation[Sadlo et al. 2010] • Reuse part of path lines for FTLE time series advectsampling grid • Fast Computation of FTLE Fields[Brunton and Rowley, Chaos 2010] • Concurrent to this work, similar idea • No quantities along trajectories (no LIC etc.) • Higher memory consumption, no proven error order
Concept • Coordinate maps : : start point of traj. : end point of traj. : hierarchylevel • obtained, e.g., by integration • constructedby „concatenation“ • All levels have same resolution (no pyramid) • Overwrite (store only highest level) : : : nodes : • general case: end points not at nodes interpolation • repeated interpolation source of error (see later)
Procedure traditional approach (n integration steps) our approach(h levels) integration of initial trajectories one catenation (s = 2) for next level O(n) O(h) = O(log n)
Computational Cost Better than “optimum”? • Theory: speedup >2 if steps >16 • Concatenation steps: no integration 2D Time-independent FTLE(in milliseconds)
Computation of Quantities: LIC • Perform operations inside hierarchical scheme • Combine quantities • , min, max, etc. • LIC: convolutionofGaussianwithGaussianisGaussian straightforward hierarchical
Scheme with Time-Dependent Data • level 0: from data set (by integration, blue) • green: required for result at time t1 (at level 3) • bold outlines: blocks kept in memory (overwrite) • hatched: next time blocks • integration range number of blocks in memory • scheme pays off for time series, i.e., dense trajectory seeding in time • no temporal interpolation needed
Results: FTLE in Time-Dependent 2D Flow FTLE ridge error • Lagrangian coherent structures (LCS) • avg. error = 0.014 cells FTLE error • 95th percentile norm. error (max. = 1.16%) • max. error = 47.33%(atisolatedpoints) hierarchical straightforward • speedup 61 • 512 x 512 resol. • 100 time frames
Results: FTLE in Time-Dependent 3D Flow FTLE ridge error hierarchical straightforward FTLE error • speedup 22 • 1283resol. • 64 time frames
Error Analysis Error order of scheme: : numberof hier. levels : global erroratnode : cellsize : maximumsecond derivative over all coordinatemaps : Lipschitzconstantfromcontinuityofcoordinatemaps • Scheme is second order in cell size (see 2-page proofinsidepaper ;-) )
Conclusion • Acceleration scheme for spacetime-dense sets of solutions (end points of traj.) • Accelerated computation of quantities along trajectories • Logarithmic computational complexity • Well suited for modern multicore or many-core architectures • Proven error order • Future work • Higher-order interpolation schemes better error order? • Costly integrators for higher-order data higher acceleration
Hierarchical Line Integration Thank you for your attention! Acknowledgements:
Results: Comparison to IBFV IBFV straightforward hierarchical
Results: LIC coordinate map error • 95th percentile error (max. = 0.1%) • max. error = 1.23% • longer advection time than LIC straightforward hierarchical
Illustration • We produce end points, not complete trajectories • colored points: our approach • white curves: trajectories • background: coordinate map error • larger error in regions of high FTLE(predictability …)
Boundaries • Closed Boundaries / Periodic Domains • No problems (no accesses outside coordinate map) • Open Boundaries (outflow) • Design choice: stop trajectories or continue? • Stopping often preferred • Achieved by adding a zero-velocity border • Repeated interpolation against zero border affects maps • Conservative approach: propagate flag, check flag