1 / 42

Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC

Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC. Máté Csanád ( ELTE, Budapest, Hungary). Why heavy ion physics – Introduction Data taking – PHENIX Zero Degree Calorimeter Actuation Software development Data analysis – Correlation functions

maddox
Download Presentation

Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics – Introduction Data taking – PHENIX Zero Degree Calorimeter Actuation Software development Data analysis – Correlation functions Methods of the calculation Status Model building – Buda-Lund hydro model Calculation of observables Comparing the results to the data

  2. The Big Bang • Early universum: hot, expanding system • Quark matter, Quark Gluon Plasma • Nucleon freeze-out

  3. The Little Bang • Melting the nucleons • Quark deconfinement • Image: water from ice • This all is possible with high energy collisions (?) • Heavy ion collisions: hot, expanding system • Hot and dense enough? New-old matter?

  4. RHIC and PHENIX

  5. SMD ZDC PHENIX experiment The Zero Degree Calorimeter • The interaction region and the ZDCs • ZDC from the front

  6. Online monitoring

  7. Three-particle correlation function • Experimental definition: , where • invariant triplet momentum • actual triplet distribution (three particles from the same event) • background triplet distribution (arbitrary particles)

  8. Theoretical aspects • Theoretical definition: • Parts of the source • core / halo • partially coherent / incoherent • The correlation function at zero relative momenta

  9. Goals • Measuring the correlation function • Core-halo ratio • Both C3 and C2 is needed • Thermal models are acceptable? • Ratio of partially coherent fraction • Jets • Bose-Einstein condensate • Fireball

  10. Event selection, applied cuts • Start from AuAu run2_v03_burn1/CNT, only MinBias events • ~17000 files • every second is different • Have to reproduce the two particle results  same cuts as ppg021 • Needed variables

  11. One track cuts • Momentum cuts • Other cuts • Particle identification: • Pions: • Kaons: • Protons:

  12. One track cuts • Mass versus charge over momentum:

  13. Two track cuts • EMC, radius: • DCH, angle and zed • ~5% of the pairs and triplets are cut this way

  14. Correlation functions of pions (+,+)  (–,–)  • Two-particle correlation functions: • Three-particle correlation functions: (+,+,+)  (–,–, –) 

  15. Correlation functions of kaons (+,+)  (–,–)  • Two-particle correlation functions: • Three-particle correlation functions: (+,+,+)  (–,–, –) 

  16. Correlation functions of protons (+,+)  (–,–)  • Two-particle correlation functions: • Three-particle correlation functions: (+,+,+)  (–,–,–) 

  17. Summary, plans • Correlation function at high relative momenta ~ 1 • Enhancement at small relative momenta • Few entries at small momenta  low statistics • Need of enhancement in statistics  to use more events • To improve on cuts • Make corrections • Coulomb correction • Solve the two-particle Schrödinger-equation • Symmetrization  Three-particle wave-function • Devide through plain-wave approximation (Alt, Csörgő, Lörstad, Schmidt-Sorensen, hep-ph/9812474)

  18. Principles of Buda-Lund hydro • Analytic expressions for all observables • Symmetric, 3D expansion • Local thermalization • Known hydro solutions in the nonrelativistic limit • Core-Halo picture • Core: hydrodynamical evolution • Halo: decay products of long lived resonances

  19. Nonrelativistic hydrodynamics • Equations of nonrel hydro • Equation of state • Scaling variable • X, Y and Z: characteristic scales, depend on (proper)time

  20. A nonrelativistic solution • A group of nonrelativistic solutions (hep-ph/0111139): (s), (s): scaling functions • This is a solution, if for the scales: • (s) arbitrary, eg.  constant, then  (s) exponential, or: Buda-Lund Zimányi-Bondorf-Garpman

  21. Numeric results • Propagate the hydro solution in time:

  22. A relativistic solution • Relativistic hydro: and • A group of general solutions (nucl-th/0306004): • Overcomes two shortcomings of Bjorken’s solution: • Rapidity distribution • Transverse flow • Hubble flow  lack of acceleration

  23. The emission function • The phase-space distribution looks like Maxwell-Boltzman,for sake of simplicity with the constant: • Consider the collisionless Boltzmann-equation Calculates the source of a given phase-space distribution: • Emission function in the simplest case (instant. source, at t=t0):

  24. Observables from Buda-Lund hydro • Core-halo correction: • One-particle spectrum with core-halo correction: • Two-particle correlation function: • Flow coefficients:

  25. The generalized Buda-Lund model • The original model was developed for axial symmetry only  central collisions • In the most general hydrodynamical form: ‘Inspired by’ nonrelativistic solutions • Have to assume special shapes: • Generalized Cooper-Frye prefactor: and • Four-velocity distribution: • Temperature: • Fugacity:

  26. Az invariáns impulzus-eloszlás • A nyeregpont-módszerrel a következőt kapjuk: • Az átlagos energia és térfogat: és • Koordináta-transzformáció szükséges: A táguló rendszer koordinátái Mérés koordinátái • Transzverz impulzus iránya • Impulzusmomentum miatt kis forgás

  27. The saddlepoint approximation • A good approximation for the product of a narrow Gaussian-like function and a broad distribution: • Exact for convolution of Gaussians, good for narrow distributions, where a parameter controls the width • The saddlepoint can be computed from • This method can be generalized for more dimensions

  28. Correlation function and radii • The correlation function: • The radii are in the simplest case, and in the B-P system: • Azimuthal depencence appears

  29. Some analytic results • Distribution widths with • Slopes, effective temperatures • Flow coefficients with

  30. Buda-Lund fits to NA44/49 data A. Ster, T. Cs, B. Lörstad, hep-ph/9907338

  31. Buda-Lund fits toNA22 h + p data N. M. Agababyan et al, EHS/NA22 , PLB 422 (1998) 395 T. Csörgő, hep-ph/0001233, Heavy Ion Phys. 15 (2002) 1-80

  32. Buda-Lund fits to130 GeV RHIC data M. Csanád, T. Csörgő, B. Lörstad, A. Ster, nucl-th/0311102, ISMD03

  33. Buda-Lund fits to200 GeV RHIC data M. Csanád, T. Csörgő, B. Lörstad, A. Ster, nucl-th/0403074, QM04

  34. Investigation of new data • Description of the rapidity dependence of the elliptic flow, little underestimated • Transverse momentum dependence OK • Modification of parameters, new fits needed • see nucl-th/0310040 and nucl-th/0403074

  35. Fit results, comparing RHIC and SPS

  36. Discussion of fit results • RHIC: high central temperature • TRHIC 200MeV, Tcrit 160MeV, TSPS 140 MeV • Significantly higher (5), than the critical • High temperature inhomogeneity • Temperature of the center much higher, than that of the surface • This gives a solution for the RHIC ‘‘HBT puzzle”. • Almost sudden freeze-out • Short freeze-out time: good approximation • Hubble-constant is the same in all directions • 3D Hubble-flow • Ratio of temperature and chemical potential constant • Explanation, why thermal models work at RHIC

  37. RHIC and the Universe • Developed Hubble-flow at RHIC and in the Universe • Universality of the Hubble expansion: u = H r • Hubble constant of the Universe: • H0= (71 ± 7) km/sec/Mpc • converted to SI units: • H0= (2.3 ± 0.2)x10-18 sec-1 • Hubble constant at Au+Au collisions with 200 GeV • HRHIC,1 = <ut>/RG (3.8 ± 0.5)x1022 sec-1 • HRHIC,2 = 1/0 (5.1 ± 0.1)x1022 sec-1 • Ratio of expansion rates: • HRHIC / H0 2 x 1040 • approx. the ratio of the ages of the objects • without correction for inflation...

  38. A useful analogy Fireball at RHIC  our Sun • Core  Sun • Halo  Solar wind • T0,RHIC  210 MeV  T0,SUN  16 million K • Tsurface,RHIC  100 MeV  Tsurface,SUN  6000 K

  39. Summary, plans • Succesful Buda-Lund hydro fits • RHIC Au+Au and also SPS h+p and Pb+Pb • Indication for deconfinement • T>Tc = 164 MeV by 5 at RHIC, but not at SPS • 3D Hubble-flow • Complete the fitting package for the relativistic calculations • Fitting the new data • Anisotropic flow, higher order flows at STAR • Centrality and rapidity dependent elliptic flow • Make prediction • J/ yield • HBT for kaons • Find the relat. hydro solution that leads to our source function

  40. Presentations • Elliptic flow and correlations from the Buda-Lund model 2nd Warsaw Meeting on Particle Correlations and Resonances in Heavy Ion Collisions October 15-18 2003, Warsaw, Poland http://hirg.if.pw.edu.pl/en/meeting/oct2003/talks/csanad/Csanad.ppt • Buda-Lund hydro modell and the rapidity dependence of the elliptic flow at RHIC 3rd Budapest Winter School on Heavy Ion Physics December 8-11 2003, Budapest, Hungary http://www.hef.kun.nl/~novakt/school03/agenda/csanad_bp03.ppt • Indication for quark deconfinement and evidence for a Hubble flow in Au+Au collisions at RHIC 17th International Conference on Quark Matter January 11-18 2004, Oakland, California, USA http://www-rnc.lbl.gov/qm2004/talks/parallel/Tuesday03/MCsanad_PPTWin.ppt • Indication for quark deconfinement and evidence for a Hubble flow in Au+Au collisions at RHIC PHENIX Global-Hadron Physics Working Group Meeting January 30 2004, Upton, New York, USA https://www.phenix.bnl.gov/WWW/p/draft/csanad/pwg/csanad_pwg_040130.ppt • Three pion correlation function analysis PHENIX Global-Hadron Physics Working Group Meeting April 2 2004, Upton, New York, USA https://www.phenix.bnl.gov/WWW/p/draft/csanad/pwg/csanad_pwg_040402.ppt • Buda-Lund hydro model Brookhaven National Laboratory Nuclear Physics Seminar April 6 2004, Upton, New York, USA https://www.phenix.bnl.gov/WWW/p/draft/csanad/seminar/csanad_nps_040406.ppt • Buda-Lund hydro in p+p collision at 200 GeV PHENIX Global-Hadron Physics Working Group Meeting May 21 2004, Upton, New York, USA and Budapest , Hungary https://www.phenix.bnl.gov/WWW/p/draft/csanad/pwg/csanad_pwg_040402.ppt

  41. Publications • Indication of quark deconfinement and evidence for a Hubble flow in 130 and 200 GeV Au+Au collisions M. Csanád, T. Csörgő B. Lörstad, A. Ster Accepted by Journal of Physics G http://arXiv.org/pdf/nucl-th/0403074 • A hint at quark deconfinement in 200 GeV Au+Au data at RHIC M. Csanád, T. Csörgő, B. Lörstad, A. Ster Accepted by Nukleonika http://arXiv.org/pdf/nucl-th/0402037 • Buda-Lund hydro model and the elliptic flow at RHIC M. Csanád, T. Csörgő, B. Lörstad Accepted by Nukleonika http://arXiv.org/pdf/nucl-th/0402036 • An indication for deconfinement in Au+Au collisions at RHIC M. Csanád, T. Csörgő, B. Lörstad, A. Ster Acta Phys. Polon. B35:191-196, 2004 http://arXiv.org/pdf/nucl-th/0311102 • Buda-Lund hydro model for ellipsoidally symmetric fireballs and the elliptic flow at RHIC M. Csanád, T. Csörgő, B. Lörstad Accepted by Nucl. Phys. A http://arXiv.org/pdf/nucl-th/0310040 • Absence of suppression in particle production at large transverse momentum in 200-GeV d+Au collisions PHENIX Collaboration (S.S. Adler, . . . , M. Csanád, . . . et al.) Phys.Rev.Lett.91:072303,2003 http://arXiv.org/pdf/nucl-ex/0306021 • Double helicity asymmetry in inclusive mid-rapidity 0 production for polarized p+p collisions at ps =200 GeV PHENIX Collaboration (S.S. Adler, . . . , M. Csanád, . . . et al.) Submitted to Phys.Rev.Lett. http://arXiv.org/pdf/hep-ex/0404027 • Analysis of identified particle yields and Bose-Einstein (HBT) correlations in p+p collisions at RHIC T. Csörgő, M. Csanád, B. Lörstad, A. Ster. To appear in Heavy Ion Physics http://arXiv.org/pdf/hep-ph/0406042

  42. Thank you for your attention

More Related