1 / 48

Capítulo 10 Estructura y Síntesis de Alcoholes

Organic Chemistry , 6 th Edition L. G. Wade, Jr. Capítulo 10 Estructura y Síntesis de Alcoholes. Jo Blackburn Richland College, Dallas, TX Dallas County Community College District ã 2006, Prentice Hall. Estructura de Alcoholes. Grupo Funcional : (-OH) Hidroxilo

madeline
Download Presentation

Capítulo 10 Estructura y Síntesis de Alcoholes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Organic Chemistry, 6th EditionL. G. Wade, Jr. Capítulo 10Estructura y Síntesis de Alcoholes Jo Blackburn Richland College, Dallas, TX Dallas County Community College District ã 2006,Prentice Hall

  2. Estructura de Alcoholes • GrupoFuncional: (-OH) Hidroxilo • Oxígenoessp3 => Chapter 10

  3. Clasificación • 1rio.: C enlazado al –OH estáenlazadosólo a otro C. • 2rio.: C enlazado al –OH estáenlazadosólo a dos C. • 3rio.: C enlazado al –OH estáenlazadosólo a tres C. • Aromáticos (fenoles): -OH estáenlazado a un anillo de benceno.=> Chapter 10

  4. => Clasifique Chapter 10

  5. Nomenclatura IUPAC • Cadena más larga con el grupo -OH. • Substituir terminación –ano del alcano por -ol. • Enumerar la cadena por el extremo más cercano al -OH. => Chapter 10

  6. Ejemplos 2-metil-1-propanol 2-butanol 3-bromo-3-metilciclohexanol => 2-metil-2-propanol Chapter 10

  7. Alcoholes insaturados • Grupo –OH toma precedencia. • Use el nombre del alqueno o alquino. 4-penten-2-ol => Chapter 10

  8. Acidos Esters Aldehídos Cetonas Alcoholes Aminas Alquenos Alquinos Alcanos Eteres Haluros => Prioridades en el Nombre Acido 4-hidroxibutanoico Chapter 10

  9. Nombres comunes isobutil alcohol sec-butil alcohol => Chapter 10

  10. Dioles hexano-1,6- diol => Chapter 10

  11. Glicoles • 1, 2 dioles (dioles vecinales) se llaman glicoles. etano-1,2- diol propano-1,2- diol propylen glycol => etilen glycol Chapter 10

  12. Fenoles 4-metilfenol 3-clorofenol => Chapter 10

  13. Propiedades Físicas • Normalmente tienen altos P.Eb. Por los Puentes de H. • Alcoholes pequeños son solubles en agua,pero la solubilidad disminuye al aumentar el tamaño del grupo alquílico. => Chapter 10

  14. => Puntos de Ebullición Chapter 10

  15. Solubilidad disminuye al aumentar tamaño del grupo alquílico. => Solubilidad en Agua Chapter 10

  16. Metanol • “Alcohol de madera” • Industrialmente se obtiene del gas natural • Industrialmente se usa como solvente Etanol • Fermentación de azucar y almidón en granos • Bebidas Chapter 10

  17. => 2-Propanol “Rubbing alcohol” Chapter 10

  18. Acidez de Alcoholes • pKa : 15.5-18.0 (H2O: 15.7) • La Acidezdisminuye a medidaqueaumenta el grupoalquílico. • Los Halógenosaumentan la acidez. • Fenoles100 millionesde vecesmásácidoqueciclohexanol! => Chapter 10

  19. TablaValores de Ka => Chapter 10

  20. => Formación de IonesAlcóxidos Alcoholes menos reactivos se tratan con K (más reactivo). Chapter 10

  21. Formación de Ion Fenóxido O O H O H + + H O H p K = 1 5 . 7 a p K = 1 0.0 a => Chapter 10

  22. Síntesis • Substitución Nucleofílica de Haluros de Alquilo. • Hidratación de Alquenos • H2O en medio ácido • hidroboración => Chapter 10

  23. Glicoles • Syn hidroxilación de alquenos • osmium tetroxide, hydrogen peroxide • cold, dilute, basic potassium permanganate • Anti hydroxylation of alkenes • peroxyacids, hydrolysis => Chapter 10

  24. Organometallic Reagents • Carbon is bonded to a metal (Mg or Li). • Carbon is nucleophilic (partially negative). • It will attack a partially positive carbon. • C - X • C = O • A new carbon-carbon bond forms. => Chapter 10

  25. Grignard Reagents • Formula R-Mg-X (reacts like R:-+MgX) • Stabilized by anhydrous ether • Iodides most reactive • May be formed from any halide • primary • secondary • tertiary • vinyl • aryl => Chapter 10

  26. => Some Grignard Reagents Chapter 10

  27. Organolithium Reagents • Formula R-Li (reacts like R:-+Li) • Can be produced from alkyl, vinyl, or aryl halides, just like Grignard reagents. • Ether not necessary, wide variety of solvents can be used. => Chapter 10

  28. => Reaction with Carbonyl • R:- attacks the partially positive carbon in the carbonyl. • The intermediate is an alkoxide ion. • Addition of water or dilute acid protonates the alkoxide to produce an alcohol. Chapter 10

  29. => Synthesis of 1° Alcohols Grignard + formaldehyde yields a primary alcohol with one additional carbon. Chapter 10

  30. => Synthesis of 2º Alcohols Grignard + aldehyde yields a secondary alcohol. Chapter 10

  31. => Synthesis of 3º Alcohols Grignard + ketone yields a tertiary alcohol. Chapter 10

  32. => How would you synthesize… Chapter 10

  33. Grignard Reactions with Acid Chlorides and Esters • Use two moles of Grignard reagent. • The product is a tertiary alcohol with two identical alkyl groups. • Reaction with one mole of Grignard reagent produces a ketone intermediate, which reacts with the second mole of Grignard reagent. => Chapter 10

  34. Grignard + Acid Chloride (1) • Grignard attacks the carbonyl. • Chloride ion leaves. Ketone intermediate => Chapter 10

  35. Grignard and Ester (1) • Grignard attacks the carbonyl. • Alkoxide ion leaves! ? ! Ketone intermediate => Chapter 10

  36. => Second step of reaction • Second mole of Grignard reacts with the ketone intermediate to form an alkoxide ion. • Alkoxide ion is protonated with dilute acid. Chapter 10

  37. => How would you synthesize... Using an acid chloride or ester. Chapter 10

  38. => Grignard Reagent + Ethylene Oxide • Epoxides are unusually reactive ethers. • Product is a 1º alcohol with 2 additional carbons. Chapter 10

  39. Limitations of Grignard • No water or other acidic protons like O-H, N-H, S-H, or -C—C-H. Grignard reagent is destroyed, becomes an alkane. • No other electrophilic multiple bonds, like C=N, CN, S=O, or N=O. => Chapter 10

  40. Reduction of Carbonyl • Reduction of aldehyde yields 1º alcohol. • Reduction of ketone yields 2º alcohol. • Reagents: • Sodium borohydride, NaBH4 • Lithium aluminum hydride, LiAlH4 • Raney nickel => Chapter 10

  41. => Sodium Borohydride • Hydride ion, H-, attacks the carbonyl carbon, forming an alkoxide ion. • Then the alkoxide ion is protonated by dilute acid. • Only reacts with carbonyl of aldehyde or ketone, not with carbonyls of esters or carboxylic acids. Chapter 10

  42. => Lithium Aluminum Hydride • Stronger reducing agent than sodium borohydride, but dangerous to work with. • Converts esters and acids to 1º alcohols. Chapter 10

  43. Comparison of Reducing Agents • LiAlH4 is stronger. • LiAlH4 reduces more stable compounds which are resistant to reduction. => Chapter 10

  44. => Catalytic Hydrogenation • Add H2 with Raney nickel catalyst. • Also reduces any C=C bonds. Chapter 10

  45. Thiols (Mercaptans) • Sulfur analogues of alcohols, -SH. • Named by adding -thiol to alkane name. • The -SH group is called mercapto. • Complex with heavy metals: Hg, As, Au. • More acidic than alcohols, react with NaOH to form thiolate ion. • Stinks! => Chapter 10

  46. => Thiol Synthesis Use a large excess of sodium hydrosulfide with unhindered alkyl halide to prevent dialkylation to R-S-R. Chapter 10

  47. => Thiol Oxidation • Easily oxidized to disulfides, an important feature of protein structure. • Vigorous oxidation with KMnO4, HNO3, or NaOCl produces sulfonic acids. Chapter 10

  48. End of Chapter 10 Chapter 10

More Related