320 likes | 484 Views
A. Goldwurm. CR Workshop – Leiden (H), 14 – 18 / 03 / 2011. 1. Instrumentation for X-Ray Astronomy. A. Goldwurm AstroP articule et Cosmologie Service d’Astrophysique / CEA – Saclay France. Specific Issues of X-ray Astronomy.
E N D
A. Goldwurm CR Workshop– Leiden (H), 14 – 18 / 03 / 2011 1 Instrumentation for X-Ray Astronomy • A. GoldwurmAstroParticuleet Cosmologie • Service d’Astrophysique / CEA – SaclayFrance
Specific Issues of X-ray Astronomy • Earth atmosphere is opaque to X-rays => balloons, rockets or satellites needed • Optics: difficult or even impossible to focalize X-rays • Detectors of Photoelectric and Compton interactions • Sources have intrinsically weak photon fluxes (non-thermal spectra or HE tail of thermal very hot medium) • Detectors sensitive to particles and particle-generated X-rays => high level of background => Low S/N ratios
The early days of X-ray Astronomy • X-ray astronomy starts after the WW II • 1962 discovery of the 1st extra-solar X-ray source with Sounding Rocket det • 1970 First X-ray satellite Uhuru • Instruments based on Proportional Counters + collimators • End of ’70s : focusing telescopes
Jacques Paul L’observatoire spatial INTEGRAL – Lycée Arago – Perpignan Planche 4 Focalisation of Soft X-rays X and gamma - rays radio, IR, visible, UV waves Soft X - rays
X-ray Grazing incidence reflection • Since EX > Eebind then refraction index for X-rays nX< 1 => it exists an incident angle of total external reflection (grazing angle) given by cosθr= nX • For nX= (1-δ), θr = (2δ)½ with δ = N0Zreρλ2/A 2π (e.g. Giacconi+ 69) • For Heavy Elements Z/A ~ 0.5 and therefore θr ρ1/2/ EX • Good reflectors are Au, Ni, Ir, Pt and critical angle are in the range 10’ - 2° for X-rays of 0.1 to 10 keV
WOLTER Type I X-ray Mirror System 1 Paraboloid + 1 Hyperboloid polished and coated mirrors Emax = k f/D keV for D=1 m diameter & f=10 m focal length => Emax~ 10 keV
A Focusing X-ray Telescope • Several nested W-I mirrors and coated in Ni, Au or Ir focalize grazing incident X-rays • Into afocal plane position sensitive detector, e.g. a CCD for X-rays • Images are formed with effective area given by nested mirrors and a low background that depends on the detector volume.
XMM Optical System and the Reflection Grating Spectrometer 70 cm 58 mirror shells 0.5 – 1 mm thick
Images from XMM Newton EPIC • Observations: stabilized pointing of target sources for typical exposures of 5 - 200 ks • Data are in form of event lists (x, y, t, E) • Analysis: correct, filter, bin and combine event lists into images, spectra, light curves, and then derive source parameters.
Imaging performances of XMM • Images of a point source by the 3 EPIC cameras (MOS1 MOS2 and PN) • PSF as function of distance from source: 6" (FWHP), 15" (HEW) 110”
XMM Performances • Effective area of XMM mirrors plus focal plane instruments • Typicalspectraotainedwith XMM EPIC • Calibration +background spectrumwith XMM EPIC PN
And … for E > 10-15 keV ? The concept of a Pinhole camera
The concept of Coded Mask Imaging source à l’infini masque codé détecteur sensible à la position
source 1 masque codé détecteur sensible à la position
source 2 masque codé détecteur sensible à la position
The ESA INTEGRAL Mission A Gamma Ray Observatory 2 main -ray Telescopes Energy: 15 keV – 8 MeV High angular res.: ~ 12’ (IBIS) High spectral Res: DE/E ~=500 (SPI) + 2 Monitors (opt, X) • Launched with a Proton on 17/10/2002 • The First Gamma-Ray OBSERVATORY for the Astronomical Community
OMC (visible band) JEM-X (X-ray monitor) IBIS γ-ray imager ISGRI camera SPI γ-ray spectrometer IBIS / ISGRI Performances Energy Band 20 keV-1 MeV Angular Resolution 12’ FOV at 100% s. 9° x 9° at 0 sensitivity 29° x 29° Point Source Location Err. 30” (S/N~30) Temporal resolution 60 s 100 keV Sensitivity (ph cm-2 s-1 keV-1) 4 10-7 (for 106 s, 3, E=E) 1 mCrab Narrow line sens. (cm-2 s-1) 10-5 Spectral resolution 8 keV
IBIS Data Analysis Reconstructed Sky Mask Pattern Detector Image Sum of Sky Images
Sameexamples of Images obtainedwith X-ray FocussingTelescopesand CodedMask hard X-ray / soft gamma-ray Telescopes
0.0° XMM-Newton GC Survey 0.3-9 keV 0.0° (Belanger et al. 2006) (Decourchelle et al. 2003) Sgr A INTEGRAL GC Survey 20-40 keV Sgr B2 0.0° 1.0° 359.0°
INTEGRAL / SPI 511 keV Line • Spherical shape (Bulge) • 2D Gaussian profile with FWHM ~ 8º • Positronium fraction: 0.91 - 0.97 • Annihilation in warm ionized medium • Origin of positrons unknown • Originated at the GC ? (Knodelseder et al. 2004, Churazov etal 04, Jean etal 2005, ..) • Centroid: • 511.06+0.17/-0.10keV • Line width: • 2.95+0.45/-0.51keV (FWHM) Flux: (1.05±0.06)×10-3 ph cm-2 s-1
Perspectives and Future Missions • Focalization at E > 10 keV, using multilayer coating + long focal L (> 10 m) with extendable mats or formation flying: • Nu-Star (US, 2013) Astro-H (JAXA, +, 2014): Emax ~ 80 keV but Ang.Res > 40’ • Several non-selected EU projects: Simbol-X (F-I), COSPIX (M3), NHXM (M3) • Focal-Plane Micro-calorimeters for high spectral res.: Astro-H (and IXO) • Light mirrors (glass layers, silicon pore layers) to obtain large effective areas and sensitivities (IXO) • Small / medium missions: X-ray polarimeters (GEM US 2014) or Large sensitive areas for timing / spectral studies (LOFT) • Coded masks for HE monitoring of transients and GRBs (SVOM Ch – F 2014) • Compton telescopes and Bragg diffusion lenses (M3) for the 1 MeV range.
X-Ray Astronomy Programmatics • Chandra, XMM-Newton, INTEGRAL missionsextended to 2014 • Nu-Star, Astro H, SRG, GEM in development phase • IXO delayed by US Decadal to after 2025 • In competition for ESA Cosmic Vision Large class Mission (decision 2011) • No HE mission in the ESA Medium class Missions M1/M2 Missions (Launch 2018) • 1 HE mission selected for the ESA M3 call (L 2020): LOFT