1 / 15

Проблемы математического моделирования процессов управления популяцией однотипных нейронов

Difficulties in Mathematical Modelling of Control Processes in One-type Neuron Populations Pokrovsky A.N. , Sotnikov O.S. Проблемы математического моделирования процессов управления популяцией однотипных нейронов А.Н.Покровский, О.С.Сотников

magnar
Download Presentation

Проблемы математического моделирования процессов управления популяцией однотипных нейронов

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Difficulties in Mathematical Modelling of Control Processes in One-type Neuron PopulationsPokrovsky A.N. , Sotnikov O.S. Проблемы математического моделирования процессов управления популяцией однотипных нейронов А.Н.Покровский, О.С.Сотников Санкт-Петербургский гос. университет, Институт физиологии им. И.П. Павлова РАН

  2. I. Neurons There are roughlyneurons in a human brain.

  3. Схематическое изображение нейрона Intracellular potential V φ Extracellularpotential

  4. Notations: V - Intracellular potential, φ - Extracellularpotential • Geometrical model of a neuron:geometry graph (tree) Г0 • Branches :lines (ofГ0) . • Nodes: points (nodesofГ0 ). • Electricalmodel of a neuron : • Currents along branchesi(x,t) ; • Currents across branchesthrough surface I(x,t) • Diffusion model: concentrations p(x,t) .

  5. Equationson thebranches (ofgraphГ0): • Conditions in points of branching : 1)continuity byхofV(x,t), p(x,t); • 2)The sum of currentsi(x,t) andfloursp(x,t) into the node is equal zero.

  6. II. Sincitialconnections of neurons. • Fig. 1 [1]. Pores between two axonsandbetween three dendrites. • Arrows – the pores; С – somaof the neuron.El.microscope. Ув. 30000. • [1]. O.S.Sotnikov. Staticsandstructural kineticof living asynaptic dendrites.St.-Petersburg, «NAUKA», 2008. - 397 с.

  7. Fig. 2. Pores (arrows) nearaxon-dendrit synapses. а,б – variantsof structures.El.microscope.Ув. 40000.

  8. Fig. 3. Forms of inter-neurons connections. • а – chemical synapse; б-в – electrical contacts; г – cito-plasmicsincitium.Arrows – perforations. • Down – geometrical model for electrical (б, в, г) and chemical (г) signals.

  9. Fig. 4 • Different inter-neuronal connections: • а – between processes of neurons; • б – betweensoma of neurons; • в – between axon and dendrite in the synapse. Doun:geometrymodels а б в с

  10. Fig. 5 [1]. • One neuron. • Faze contrast, об. 20, ок. 10.

  11. Fig. 6 [1]. • Contacts of neurons. • Faze contrast,об. 20, ок. 10.

  12. III. Equatios for clustersof neurons • Several neurons with connections by pores are named cluster;denote as Гр . • Geometrymodel – geometricalgraph. • Several neurons with connections by electrical contacts and by poresare named electrical cluster;denote as ГЕ . • Geometrymodel – geometricalgraph.

  13. Equations for Гр (diffusion) Equations forГE (electrical cluster) • Conditions in nodes: 1)continuous by хV(x,t), p(x,t); • 2)Sumof currents i(x,t) and floursp(x,t) , into the node is equal zero.

  14. GraphsГр andГEdiffer!граф Гр к виду ГEи только после этого интегрировать уравнения.

  15. END

More Related