230 likes | 391 Views
Improving Content Addressable Storage For Databases. Conference on Reliable Awesome Projects (no acronyms please) Advanced Operating Systems (CS736). Brandon Smith Vandhana Selvaprakash. Background. Content Addressable Storage (CAS) Store information by content
E N D
Improving Content Addressable Storage For Databases Conference on Reliable Awesome Projects (no acronyms please) Advanced Operating Systems (CS736) Brandon Smith Vandhana Selvaprakash
Background • Content Addressable Storage (CAS) • Store information by content • Content addressable vs. location addressable • Idea • Divide files into ‘chunks’ • Index by chunk fingerprints • Allows for… • Exploiting commonality for data reduction • Enriched metadata for better searches • Near-line storage • WORM • Data integrity
Motivation • CAS is great, but not for databases • Why? Metadata is tightly interspersed with data… • Cannot just ignore database storage • Makes up significant fraction of storage system clients • Goal: improve CAS for databases
Approach • Evaluate state-of-the-art CAS methods • Study different database systems for storage characteristics • Suggest techniques that improve CAS for databases
What’s the State-of-the-Art? • Avoiding the Disk Bottleneck in the Data Domain Deduplication File System, B. Zhu et al. FAST ’08 • Content-aware variable-length chunking • Chunk Compression • Acceleration Methods • Summary Vector • Stream-Informed Segment Layout • Locality Preserved Caching
Analysis of State-of-the-Art • Implemented: • Variable-length chunking • Efficient hash value storage and lookup • Summary Vector • Questions: • How well does average chunk size match desired? • Can we use this for other problems? • Performance on different types of data? Hash value Bloom filter
How well does average chunk size match desired? Desired (bytes) Actual Average128 175 256 303512 5591024 10702048 20944096 41378192 822016384 1641332768 32848…8192 21335 …8192 15443 … 4096 11008192 184916384 2062 1 GB Music Data 330 MB Empty Oracle Tablespace 5 MB Empty PostgreSQL Tablespace 560 MB Mix of Files
Can we use this for other problems? Yes! Efficiently discover duplicate files (e.g., music files) 0.9920000000000000 C:\Workspace\Alicia\Oasis_-_What's_The_Story_... 0.9907834101382489 C:\Workspace\Alicia\Incubus_-_Morning_View_-_... 0.9903381642512077 C:\Workspace\Alicia\Hard_Candy_-_Counting_Cro... 0.9891304347826086 C:\Workspace\Songs\Audioslave_-_Show_Me_How_T... 0.9880239520958084 C:\Workspace\Alicia\The_donavon_frankenreiter... 0.9872611464968153 C:\Workspace\Songs\Cornell-Rage_Demos_-_Track... 0.9837398373983740 C:\Workspace\Alicia\Eric_clapton_-_The_cream_... ... ... 0.09090909090909091 C:\Workspace\Songs\Blink_182_-_Reebok_Commerc... 0.08602150537634409 C:\Workspace\Songs\311_Wake_Your_Mind_Up-from... 0.08333333333333333 C:\Workspace\Songs\AUDIOSLAVE-getaway_car-.mp... 0.07826086956521740 C:\Workspace\Songs\Glassjaw_-_Lovebites_and_R... 0.07692307692307693 C:\Workspace\Songs\aladdin_-_i_can_show_you_t... 0.07594936708860760 C:\Workspace\Songs\Glassjaw_-_Trailer_Park_Je...
Performance on different types of data? • Audio data • Very well • Common mix of files (PDF, text, PPT, image data, etc.) • Reasonably well • Empty database tablespaces • Terrible
Observations • Even Udi Manber makes mistakes! • Debugging code especially difficult when dealing with raw data and complex hash functions • Variable size chunking does not work well for databases should be
What’s different about Databases? • Rigid format of DB structures • Database Block => Slotted Page • Indifferent performance for variable sized chunking • Metadata Galore • ‘Understand’ Data being CASed • Finer grained Commonality Factoring • Similar Blocks common, Identical Blocks rare.
Naïve CAS for DB • Finer ‘Chunk’ Granularity • Computational Overhead overwhelms Commonality Factoring • Doesn’t work
Naïve CAS for DB • Finer ‘Chunk’ Granularity • Computational Overhead overwhelms Commonality Factoring • Doesn’t work
Overlaying Template Chunks • Identifying Special Cases • The ‘Almost Zero’ Block • Template Chunks • Delta Chunks • Identifying Template Chunks • Static Vs. Dynamic • Memory Vs. Computation
Overlaying - Results • Good, but not good enough. • Too much work With Overlays Naïve Chunking
Need For DB Knowledge • The Oracle Database Block • Variable Block Sizes (4/8 KB)
The Postgres Data Block 8 KB Need For DB Knowledge +----------------+--------------------------------------+ | PageHeaderData | linp1 linp2 linp3 .. | +-----------+----+-------------------------------------+ | ... linpN | | +-----------+-------------------------------------------+ | ^ pd_lower | | | | v pd_upper | +-------------+-----------------------------------------+ | | tupleN ... | +-------------+-----------------+----------------------+ | ... tuple3 tuple2 tuple1 | "special space“ | +--------------------------------+----------------------+ ^ pd_special
Semantics-Aware CAS for DB • Fixed Chunk Size • Chunk Size = Data Block Size • Identical Blocks • Exploiting Similarity - Data Aware Chunk Compression • Uses metadata within block, DB system level tables • Free space • Redundant Tuples • Redundant Items • Memory Saved Vs. Data Coherence • Intra block Vs Inter Block • Column-based Storage for improved savings
Semantics-Aware CAS - Evaluation • Oracle • Chunk Size = 8 KB • Leveraging Free Space (PCTFREE) • Saves 73.6% of space used (sparse tablespace) • Saves 27.1% of space used (almost full tablespace) • Observations • Better savings than naïve methods • Solution tightly coupled to database • Changes in DB configuration?
Future Work • Implement • Redundant Tuples (in progress) • Within block • Reorganize tuples across blocks? • Redundant Items • Explore Column Stores • more CAS friendly
Summary and Questions • Analysis of state-of-the-art • Variable sized chunking is usually good • Semantic aware techniques are better for databases • High computation cost, but OK for near-line storage
Insert Data … … Insert Data … … Content Addressable Storage - Old& New • Old: Fixed-size chunks (Venti) • New: data-aware variable-sized chunking (LBFS, Data Domain Inc.) …