240 likes | 394 Views
Interstellar Heliopause Probe (IHP) System Design of a Challenging Mission to 200 AU. M. Leipold, Kayser-Threde GmbH. ISSS 2010, New York, July 19 – 22, 2010. Overview. Study Team Propulsion Trade-Off Mission/Trajectory Analysis Spacecraft Architectural Design Mass and Power Budgets.
E N D
Interstellar Heliopause Probe (IHP) System Design of a Challenging Mission to 200 AU M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Overview • Study Team • Propulsion Trade-Off • Mission/Trajectory Analysis • Spacecraft Architectural Design • Mass and Power Budgets M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Study Team - Optical Communication Option M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Propulsion Options Assessed for IHP • A) High Thrust Chemical Propulsion (CP) (Isp = 320s ... 370s; Cryogenic first stage Isp = 470s), incl. Nuclear Thermal Propulsion (NTP) • B) Mixed High/Low Thrust Propulsion • C) Nuclear Electric Propulsion (NEP) with Isp = 5,000s ... 10,000s • D) Solar Sail Propulsion (SSP) with ac = 0.75 .. 3.0 mm/s2 Assumed Launch Mass to GTO for Options A), B) and C): < 3,020 kg Assumed Launch Mass to Earth Escape for Option D): < 2,030 kg (Kourou) M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Preliminary Spacecraft Architectural Design for NEP-Concept Power Subsystem + Radiation Shield Deployable Truss S/C Bus with Payload Payload PWRE Booms 2 x 35m Payload „Core“ Magnetometer Boom 7-8m M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Propulsion Trade-Off Result • High thrust (conventional) propulsion incl. gravity assists proved to be infeasible for 25 year flight time and transported mass of ca. 200 kg • Mixed high thrust / low thrust also not feasible • NEP scenarios infeasible given the launch vehicle constraint of SOYUZ-FREGAT • Solar Sail option was selected as baseline • Solar Sail scenarios show performance requirement of 1 mm/s2 to realize flight times of appr. 25 years to reach 200 AU, i.e. depending on minimum solar approach distance M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Scenarios: Low Thrust Solar Sail Propulsion M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Optimized Transfer Result & Navigation Strategy Strategy: „Dual Solar Photonic Assist“ • 1st aphelion: 1.05 AU • 1st perihelion: 0.51 AU • 2nd aphelion: 5.76 AU • 2nd perihelion: 0.25 AU ODYSSEE Low-Thrust Optimization, 2004 Note: Trajectory not optimized for escape asymptote direction to nose of Heliopause M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Evolution of Solar Distance • Total time of Flight: 25.5 years • Cruise Phase until 5 AU: 6.7 years (Sail jettisoned) • Max. Sail Turn Rates: 28.6°/ day, or 1.2°/hour Conclusions: it pays off to spend more time in the inner solar system by increasing the orbit eccentricity Sail jettisoned M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
IHP Launch Configuration HIPS HGA LGA RTG Deployable Booms Sail Container Fairing LV Adapter M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Sail Deployed 20m Central Control Mast 2DOF Gimbal IHP Platform Boom Deployed Sail Container (open) M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Spacecraft Architectural Design: Science Mode 35m Plasma-Wave Experiment Boom 8m Magnetometer Boom Highly Integrated Payload Suite M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
IHP Science Payload • Total of 8 instruments accommodated • Total mass: 20.9 kg incl. subsystem margin M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Platform Concept (incl. Science Platform) M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
AOCS • Maximum turn rate sailing mode: 29°/day (heliocentric, near sun) • Pointing stability science mode: 0.5° • Life time: • sailing mode: ca. 6.5 years • science mode: ca. 19 years • Minimum mechanical complexity • Sailcraft controllability for first natural frequency of 0.0065 Hz • Coherent AOCS design for sailing mode and science mode (sensors etc.) • Need to design two different ADCS for IHP M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Sail Control Schemes Trade-Off M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
IHP AOCS Architecture M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
IHP Sail ADCS Analysis IHP Sail Configuration • Moments of inertia = (433000, 433000, 865000) kg-m2 • cm-cp offset = 0.525 m (0.25% of 210 meter sail edge) • SRP Thrust =Fmax= PA = 0.3621 N • where, is the sail efficiency (1.8 assumption), P is the SRP constant P = 4.536 x 10-6 N/m2 at 1 AU, A is the projection area (210 x 210 m2) • NSRP , SRP Disturbance torque = F (cm-cp) =0.189 N-m • Angular momentum storage/dumping > (NSRP )(3600 s)= 680 N-m-s per hour • Use a 0.65 deg/s spin rate for 0.5 deg pointing accuracy, 1-2 rpm M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Intermediate ACS-Results: • MATLAB Simulations • 35 deg in 6 hrs • 20m Mast • 210 x 210 m • 200 kg science s/c • 400 kg total mass • Gimbal angle < 5 deg M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Launch Vehicle Accommodation on SOYUZ-FREGAT (Fairing Type ST) SOYUZ-FREGAT M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
IHP Mass Budget: Platform + Sail M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Summary • IHP showed that advanced Solar Sails can outperform Nuclear Electric Propulsion for High-Dv Missions in Deep Space • IHP provided important results for sailcraft ACS simulations and sail controllability • IHP helped to define the technology requirements and the definition of a solar sail technology roadmap for ESA
Thermal Control Concept Couplings:Bus – Radiator: 2 Heat pipes per radiator; C = 2.5 W/K eachBus – RTG: 0.1 W/K eachBus – Antenna: 0.25 W/KInstruments – Radiator: 0.07 W/K totalInstruments – Boom: 0.09 W/K total RTG shield: reflective High temperature MLIwith reflective outer layereffective emittance: 0.025total area: ca. 4 m² RTG: black coateddecoupled from bus Bus Radiators: black coatedSize: 0.1m² each Instrument Radiator: black coatedSize: 0.08m² M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010
Operations Candidate Ground Stations • New Norcia • Villafranca del Castillo, Spain • Weilheim, Germany Only small modifications are required for ground stations Downlink Data Rate at Ka Band: • 1 kbps downlink during cruise phase up to 6 AU • 200 bps downlink up to 200 AU • 4h per week contact time planned (average) M. Leipold, Kayser-Threde GmbH ISSS 2010, New York, July 19 – 22, 2010