360 likes | 528 Views
It takes two to tango: recent advances in homogeneous cooperative dual catalysis by transition metals. Janelle Steves University of Wisconsin-Madison Literature Seminar February 23 rd , 2012. What is Cooperative dual catalysis?. Traditional single-catalyst catalysis.
E N D
It takes twoto tango:recent advances in homogeneous cooperative dual catalysis by transition metals Janelle Steves University of Wisconsin-Madison Literature Seminar February 23rd, 2012
What is Cooperative dual catalysis? Traditional single-catalyst catalysis Cooperative dual catalysis two catalysts present at the onset of a reaction simultaneously and selectively activate and couple two substrates Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633-658 Shinde, V. S.; Gajula, B.; Patil, N. T. Org. Biomol. Chem. 2012, 10, 211-224
Cooperative dual catalysiscomparison to other dual catalytic processes Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302-312 Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633-658 Shinde, V. S.; Gajula, B.; Patil, N. T. Org. Biomol. Chem. 2012, 10, 211-224
Cooperative catalysisInspiration from nature Brown, K. A.; Kraut, J. Faraday Discuss.1992, 93, 217-224 Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633-658
Cooperative catalysisClassification of reactivity Restorative Catalysis Cascade Catalysis Cooperative Dual Catalysis Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302-312
Cooperative catalysisClassification of reactivity Restorative Catalysis Åkermark, B.; Ljunggren, S. O.; Bäckvall, J. E. J. Am. Chem. Soc.1979, 101, 2411-2416 Divakaruni, R.; Stille, J. K. J. Am. Chem. Soc.1978, 100, 1303-1304 Wacker oxidation Cascade Catalysis Eschavarren, A. M.; Stille, J. K. J. Am. Chem. Soc.1987, 109, 5478-5486 Stille-Kelly coupling Cooperative Dual Catalysis Tohda, Y.; Hagihara, N.; Sonogashira, K. Tetrahedron Lett.1975, 16, 4467-4470 Sonogashira cross-coupling Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302-312 Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; 1st ed.; Elsevier: Burlington, 2005, p. 424, 440, 474
Cooperative Dual CatalysisCatalyst Pairing acid-base Brønsted acid-transition metal Lewis acid-Lewis acid organocatalyst-transition metal organocatalyst-organocatalyst transition metal-transition metal
What’s in a name?Different names, similar mechanisms “Cooperative dual catalysis” Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc.2004, 126, 9928-9929 “Synergistic catalysis” Simonovich, S. P.; Van Humbeck, J. F.; MacMillan, D. W. C. Chem. Sci.2012, 3, 58-61 “Contemporaneous dual catalysis” Luan, X.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 1706-1709 “Catalyzed catalysis” Shi, Y.; Roth, K. E.; Ramgren, S. D.; Blum. S. A. J. Am. Chem. Soc.2009, 131, 18022-18023
What’s in a name?Different names, similar mechanisms Cooperative dual catalysis = Catalyzed catalysis = Synergistic catalysis = Contemporaneous dual catalysis
Cooperative dual catalysisGuiding principles for development catalyst self-quenching ligand lability bimetallic complex formation substrate-catalyst selectivity intermediate affinity rates of formation rates of decomposition competition with stoichiometric substrate Cooperative dual catalysis can be a conceptual framework for reaction design
Cooperative Dual CatalysisInspiration and Early Examples Castro-Stephens reaction Stephens, R. D.; Castro, C. E. J. Org. Chem.1963, 28, 3313-3315 irreproducible yields Sonogashira reaction Tohda, Y.; Hagihara, N.; Sonogashira, K. Tetrahedron Lett.1975, 16, 4467-4470 • milder conditions • near room temperature • rigorously dry solvent not required • functional group-tolerant • avoids stoichiometric alkynylcuprate • first example of cooperative dual catalysis Can this mechanism serve as a model for the design of other cross-coupling reactions?
Better together: Palladium + Copperbeyond the Sonogashira reaction Rodríguez, N.; Melzer, B.; Linder, C; Deng, G.; Levy, L. M.; Gooβen, L. J. J. Am. Chem. Soc.2007, 129, 4824-4833
Better Together: Palladium + CopperCooperation for biaryl cross-coupling Design by mechanism Schambach, R. A.; Cohen, T. J. Am. Chem. Soc. 1970, 92, 3189-3190 Nilsson, M. Acta. Chem. Scand.1966, 20, 423-426 DFT calculations: B3LYP/6-31G* (C, H, N, O, F) ECP10MDF (Cu) Influence of ortho coordinating groups confirmed by experimentation Thiel, W. R.; Rodríguez, N.; Linder, C.; Melzer, B.; Gooβen, L. J. Adv. Synth. Catal.2007, 349, 2241-2246 coupling two catalytic processes Deng, G.; Levy, L. M.; Gooβen, L. J. Science2006, 313, 662-664
Better Together: Palladium + CopperCooperation for biarylcross-coupling Deng, G.; Levy, L. M.; Gooβen, L. J. Science2006, 313, 662-664 Expanded… using Ag2CO3 at lower temperatures aryl triflates microwave chemistry meta or para groups on aryl carboxylate Linder, C.; Rodríguez, N; Gooβen, L. J. J. Am. Chem. Soc. 2008, 130, 15248-15249 Zimmermann, B.; Linder, C.; Rodríguez, N; Lange, P. P.; Hartung, J.; Gooβen, L. J. Adv. Synth. Catal. 2009, 351, 2667-2674 Linder, C.; Rodríguez, N.; Lange, P. P.; Fromm, A.; Gooβen, L. J. Chem. Commun. 2009, 7173-7175
Better Together: Palladium + CopperCooperation for biarylcross-coupling L = phenanthroline, phosphine, others X = I, Br, Cl no reaction with Pd or Cu alone proposed mechanism transmetalation decarboxylation oxidative addition anion exchange reductive elimination Deng, G.; Levy, L. M.; Gooβen, L. J. Science2006, 313, 662-664
Unexpected Cooperationpalladium-palladium cooperative dual catalysis Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc.2005, 127, 18020-18021 expected major product SEAr mechanism? Initial mechanistic study: concerted metalation-deprotonation DFT analysis: B3LYP/TZVP B3LYP/DZVP (Pd) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc.2008, 130, 10848-10849
Unexpected CooperationCooperative Dual Catalysis in Direct Arylation 1 induction period observed 1st order 1 2 no induction period 0th order Does cyclometalated complex do C-H activation? 1/2 order Tan, Y.; Barrios-Landeros, F.; Hartwig, J. F. J. Am. Chem. Soc.2012, DOI: 10.1021/ja2122156
Unexpected CooperationCooperative Dual Catalysis in Direct Arylation 1 turnover-limiting C-H activation occurs with 2 rate does not depend on 1 2 rate increases with increasing [2] calculated ΔG PyO-1 = 33 kcal/mol ΔG PyO-2 = 25 kcal/mol (experimental 27 kcal/mol) Is PtBu3 or OAc ligand involved in C-H activation? 1 acetate involved in C-H cleavage Is transmetalation between 1 and 2 feasible? cooperative dual catalysis 1 Tan, Y.; Barrios-Landeros, F.; Hartwig, J. F. J. Am. Chem. Soc.2012, DOI: 10.1021/ja2122156
Unexpected CooperationCooperative Dual Catalysis in Direct Arylation transmetalation supported by model study acetate involved in C-H cleavage oxidative addition 1 turnover-limiting C-H activation 2 reductive elimination 1/2 order 1st order Tan, Y.; Barrios-Landeros, F.; Hartwig, J. F. J. Am. Chem. Soc.2012, DOI: 10.1021/ja2122156
SummaryCooperative Dual catalyzed Cross-Coupling • Sonogashira is a good mechanistic model • What is the significance of the Pd/Cu pair? • Can other metals be substituted for Pd? • Cooperative dual catalysis can result in… • Improved reactivity • Reduced side reactions and reduced catalyst poisoning • Cooperative dual catalysis cannot always be predicted • Mechanistic study reveals greater insight into reactions • Spur development of other transformations
Cooperative dual catalysisUsing Tsuji-Trost electrophiles complexation decomplexation oxidative addition nucleophilic attack Frost, C. G.; Howart, J.; Williams, J. M. J. Tetrahedron: Asymmetry1992, 3, 1089-1122 Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; 1st ed.; Elsevier: Burlington, 2005, p. 458
Cooperative dual catalysisUsing Tsuji-Trost electrophiles decomplexation complexation oxidative addition nucleophilic attack Frost, C. G.; Howart, J.; Williams, J. M. J. Tetrahedron: Asymmetry1992, 3, 1089-1122 Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; 1st ed.; Elsevier: Burlington, 2005, p. 458
Cooperative Dual CatalysisEarly examples with Tsuji-Trost electrophiles reaction design optimized method additional substrates control experiments Pd has no effect on enantioselectivity electron-rich ligands increase rate of Nu attack Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc.1996, 118, 3309-3310
Cooperative Dual CatalysisEarly examples with Tsuji-Trost electrophiles oxidative addition nucleophilic attack coordination-deprotonation Does ligand speciation influence %ee? decomplexation Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc.1996, 118, 3309-3310
A golden opportunityNovel reactivity with Gold and Palladium reaction design optimized conditions Is the mechanistic design truly operative? Shi, Y.; Roth, K. E.; Ramgren, S. D.; Blum. S. A. J. Am. Chem. Soc.2009, 131, 18022-18023
A golden opportunityProposed Mechanism Observed by 1H NMR spectroscopy ID by MS and competition studies oxidative addition reductive elimination Saturation kinetics in substrate suggest pre-equilibrium transmetalation Shi, Y.; Roth, K. E.; Ramgren, S. D.; Blum. S. A. J. Am. Chem. Soc.2009, 131, 18022-18023
Cooperative Dual CatalysisOvercoming Challenges in synthetic chemistry mechanistic hypothesis Meyer-Schuster affinity of intermediates for each other vs. affinity for substrate optimized conditions Luan, X.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 1706-1709 Luan, X.; Miller, Y.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 12824-12833
Is it really cooperative catalysis?Qualitative Experiments system sensitive to catalyst ratios! rates matter! Luan, X.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 1706-1709 Luan, X.; Miller, Y.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 12824-12833
Is it really cooperative catalysis?Qualitative Experiments Is sequential catalysis operating? Is palladium necessary? Luan, X.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 1706-1709 Luan, X.; Miller, Y.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 12824-12833
Proposed Mechanism L1 = OSiPh3 L2 = desired product oxidative addition rearrangement side product side product Luan, X.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 1706-1709 Luan, X.; Miller, Y.; Trost, B. M. J. Am. Chem. Soc.2011, 133, 12824-12833
SummaryCooperative Dual Catalyzed allylations • Judicious pairing of electrophile and nucleophile required • Need reliable intermediates • Tsuji-Trost • Cooperative dual catalysis provides: • Improved reactivity • Novel reactivity • Reduced side reactions and reduced catalyst poisoning • Qualitative mechanistic studies provide insight • Kinetics and stoichiometric studies will expand scope of reactivity
Cooperative dual catalysisGuiding principles and Conclusions catalyst self-quenching ligand lability bimetallic complex formation substrate-catalyst selectivity intermediate affinity rates of formation rate of decomposition competition with stoichiometric substrate Ideal reaction: atom economical, few steps, readily available materials, selective
The Future of the field • Rigorous mechanistic studies • Kinetics • Spectroscopy • Stoichiometric studies • Control experiments • Expansion of methodology to other mechanistically well-defined systems • Using reliable intermediates • Broadening cooperative Tsuji-Trost chemistry • Expanding scope of nucleophiles • Tuning regioselectivity with ligands • Using cooperative dual catalysis as conceptual framework for reaction design • Beyond palladium
Acknowledgements Prof. Shannon Stahl Kat Myhre Stahl group Landis group Practice Talk Attendees: Colin Anson Jackie Brown Megan Cismesia Tianning Diao David Mannel Jared Rigoli Dr. James Gerken Sara Moyer Alison Suess Jodie Greene Alicia Phelps Dian Wang Dr. Wan Pyo Hong Dr. Adam Powell Adam Weinstein Dr. Jessica Hoover Dr. Doris Pun Paul White Andrei Iosub Dr. Ali Rahimi Dr. Changwu Zheng Jon Jaworski Joanne Redford