1 / 34

宇宙微波背景辐射

宇宙微波背景辐射. 郭宗宽. 中国科学院研究生院 2013.06.18. 交叉学科 : 宇宙学. 宇宙学基本假设和理论基础 宇宙学原理(无边,无中心) 爱因斯坦引力理论 宇宙物质(重子 + 光子 + 中微子 + 暗物质 + 暗能量 ) 观测实验的重要性 3 个观测: 星系红移 , 原初核丰度 , 宇宙微波背景辐射 超新星,大尺度 结构 ( 2dFGRS,SDSS,LSST) , 宇宙微波背景辐射 , 宇宙射线 ( Fermi-LAT,PAMELA,AMS-02) , 21 厘米谱线,射电 波 ( SKA) , 弱引力透镜,引力波, 中微子

maire
Download Presentation

宇宙微波背景辐射

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 宇宙微波背景辐射 郭宗宽 中国科学院研究生院 2013.06.18

  2. 交叉学科:宇宙学 • 宇宙学基本假设和理论基础 宇宙学原理(无边,无中心) 爱因斯坦引力理论 宇宙物质(重子+光子+中微子+暗物质+暗能量) • 观测实验的重要性 3个观测:星系红移,原初核丰度,宇宙微波背景辐射 超新星,大尺度结构 (2dFGRS,SDSS,LSST),宇宙微波背景辐射, 宇宙射线 (Fermi-LAT,PAMELA,AMS-02),21厘米谱线,射电波 (SKA), 弱引力透镜,引力波,中微子 • 目前的进展和存在的问题 宇宙加速膨胀(暴涨,暗能量,修改引力,非均匀宇宙) 宇宙大尺度结构形成(冷/温/热暗物质,暗物质粒子的性质,暗物质分布)

  3. The Nobel Prize in Physics 2011 was divided, one half awarded to Saul Perlmutter (leader of SCP), the other half jointly to Brian P. Schmidt (leader of High-Z) and Adam G. Riess (High-Z) "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae". A.G. Riess et al., Astron. J. 116 (1998) 1009[arXiv:astro-ph/9805201] S. Perlmutter et al., Astrophys. J. 517 (1999) 565 [arXiv:astro-ph/9812133] Adam G. Riess Saul Perlmutter Brian P. Schmidt

  4. 内容 • 宇宙微波背景(CMB)辐射的形成 • CMB的发现和探测实验 • CMB的数据分析 • CMB各向异性的物理起源 • CMB的宇宙学解释 • 现状与展望

  5. 1. CMB的形成 the reaction rate vs. the expansion rate decoupling during recombination

  6. 2. CMB的发现和探测实验 • The CMB was first predicted by G. Gamow, R. Alpher and R. Herman in 1948 T~5 K • the first discovery of the CMB radiation in 1964-1965 the Nobel Prize in Physics 1978: A.A. Penzias and R.W. Wilson • It is interpreted by R. Wilson, B. Burke, R. Dicke and J. Peebles • in 1965.

  7. Hot big bang • COBE (Cosmic Background Explorer) - the first generation CMB experiment, launched on 18 Nov. 1989, 4 years the Nobel Prize in Physics 2006: J.C. Mather and G.F. Smoot J.C. Mather G.F. Smoot (DMR) isotropy

  8. the COBE satellite experiments: • the Far InfraRed Absolute Spectrophotometer (FIRAS) team • the Differential Microwave Radiometer (DMR) team • advantages of satellite experiments: • no atmospheric thermal emission • full-sky map

  9. WMAP (Wilkinson Microwave Anisotropy Probe) - the second generation CMB experiment, launched on 30 June 2001, 9 years 141°

  10. 23 GHz 33 GHz 41 GHz 61 GHz • free-free emission: electron-ion scattering • synchrotron emission: the acceleration of cosmic ray electrons in magnetic fields • thermal emission from dust 94 GHz

  11. foreground mask • angular power spectrum of CMB

  12. WMAP science team publications 2003, WMAP1, 14 papers, cited by 6873 records 2007, WMAP3, 5papers, cited by 5289 records 2009, WMAP5, 8papers, cited by 3527records 2011, WMAP7, 6papers, cited by 3803 records 2012, WMAP9, 2papers, cited by 303 records We have entered a new era of precision cosmology.

  13. Planck - the third generation CMB experiment, launched on 14 May 2009, 30 months, 5 full-sky surveys LFI: 30,44,70 GHz HFI : 100,143,217,353,545,857 GHz • high sensitivity • wide frequency • full-sky coverage • high resolution ~7º,15′,5′

  14. cosmological parameters the temperature angular power spectrum 20 March 2013, 29 papers

  15. nextgeneration space-based CMB experiment • NASA: CMBPol • ESA: COrE

  16. Other experiments • ground-based experiments • ACBAR, BICEP, CBI, VSA, QUaD, BICEP2, … • ACT, ACTPol from 2013 • SPT, SPTpol from 2012 • QUBIC (r~0.01,bolometer, interferometer) • balloon-borne experiments • BOOMRANG, MAXIMA, … • EBEX • Spider

  17. South Pole Telescope (SPT) 10 meter telescope 3 frequencies (95, 150 and 220 GHz) arXiv:1105.3182: SPT+WMAP7+BAO+H0 arXiv:1212.6267: SPT+WMAP7+BAO+H0

  18. Atacama Cosmology Telescope (ACT) 3 frequencies (148, 218, and 277 GHz) 6 meter telescope

  19. 3. CMB的数据分析 time-ordered data full sky map spectrum parameter estimates  time-ordered data  the temperature anisotropies can be expanded in spherical harmonics

  20.  for Gaussian random fluctuations, the statistical properties of the temperature field are determined by the angular power spectrum For a full sky, noiseless experiments,  cosmological parameter estimation likelihood function for a full sky: the sky-cut, MCMC

  21. 4. CMB各向异性的物理起源 • primary CMB anisotropies (at recombination) inflation model (Alan H. Guth in 1981) primordial power spectrum of perturbations angular power spectrum of CMB anisotropies • secondary CMB anisotropies (after recombination) thermal/kinetic Sunyaev-Zel’dovich effect integrated Sachs-Wolf effect reionization weak lensing effect

  22. inflation model V (φ) reheating inflation φ for slow-roll inflation, the primordial power spectra of scalar/tensor perturbations:

  23. the coupled, linearized Boltzmann, Einstein and fluid equations

  24. the metric in the synchronous gauge the Einstein equations the equations of state

  25. the linearized Einstein equations in k-space the perturbed part of energy-momentum conservation equations for the non-relativistic fluid (baryon, CDM, DE) in k-space

  26. the Boltzmann equation in the synchronous gauge for the photon and neutrino components in k-space for massless particles F is expanded in a Legendre series using , , , the recursion relation and the orthonormality of the Legendre polynomials we obtain a hierarchy.

  27. initial conditions for the CMB photon initial conditions (radiation-dominated, outside the horizon, adiabatic mode, isocurvature mode)

  28. CMB anisotropy expanded in spherical harmonics the angular two-point correlation function the angular power spectrum is

  29. features of spectrum • large angular scales integrated SZ effect (<10) Sachs-Wolf effect (10~100) • intermediate scales acoustic oscillations (100~1000) • small scales (>1000) Silk damping: the dissipation of small-scale perturbations caused by photons' random walking out of overdense regions. For full accuracy, the Boltzmann equation must be solved to follow the evolution of the photon distribution function.

  30. 5. CMB的宇宙学解释

  31. The stronger the contraction, the higher these peaks should be.

  32. 6. 现状与展望 • Planck may be the last space-based experiment to measure the temperature spectrum. • no evidence for non-Gaussianity;strong constraints on non-Gaussianity • tension between Planck and astrophysical measurements • anomalies in the WMAP/Planck data (the quadrupole-octopole alignment, hemispherical asymmetry, the cold spot, …) • detection of the primordial tensor perturbations

  33. Thank you for your attention.

More Related