1 / 7

Geometry/Trig 2 Name: __________________________

Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – Page 2 – Answer Key Date: ___________________________. Section IV – Determine which lines, if any, are parallel based on the given information. 1.) m Ð 1 = m Ð 9 c || d 2.) m Ð 1 = m Ð 4 None

mairi
Download Presentation

Geometry/Trig 2 Name: __________________________

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – Page 2 – Answer Key Date: ___________________________ Section IV – Determine which lines, if any, are parallel based on the given information. 1.) mÐ1 = mÐ9 c || d 2.) mÐ1 = mÐ4 None 3.) mÐ12 + mÐ14 = 180 a || b 4.) mÐ1 = mÐ13 None 5.) mÐ7 = mÐ14 c || d 6.) mÐ13 = mÐ11 None 7.) mÐ15 + mÐ16 = 180 None 8.) mÐ4 = mÐ5 a || b 1 2 9 10 a 3 4 11 12 5 6 13 14 b 7 8 15 16 c d J Section II - Proofs 1. Given: GK bisects ÐJGI; mÐ3 = mÐ2 Prove: GK || HI 1 G K 2 Statements Reasons 1. Given 1. GK bisects ÐJGI 3 I 2. mÐ1 = mÐ2 2. Definition of an Angles Bisector H 3. mÐ3 = mÐ2 3. Given 4. mÐ1 = mÐ3; Ð1  Ð3 4. Substitution 5. GK || HI 5. If two lines are cut by a transversal and corresponding angles are congruent, then the lines are parallel.

  2. Geometry/Trig 2 Unit 3 Proofs Review – Answer Key Page 2 2. Given: AJ || CK; mÐ1 = mÐ5 Prove: BD || FE A C Reasons Statements 1 2 3 1. AJ || CK 1. Given 2. mÐ1 = mÐ3 2. If two parallel lines are Ð1 Ð3 cut by a transversal, then corresponding angles are congruent. 3. mÐ1 = mÐ5 3. Given 4. mÐ3 = mÐ5 4. Substitution Ð3 Ð5 5. BD || FE 5. If two lines are cut by a transversal and corresponding angles are congruent, then the lines are parallel. B D 4 5 F E J K 3. Given: ST || QR; Ð1 @Ð3 Prove: Ð2 @ Ð3 P Reasons Statements • ST || QR 1. Given • 2. Ð1 @Ð2 2. If two parallel lines are cut by a transversal, then corresponding angles are congruent. • 3. Ð1 @Ð3 3. Given • 4. Ð2 @Ð3 4. Substitution 1 3 S T 2 Q R

  3. 4. Given: a || b; Ð3 @Ð4 Prove: Ð10 @Ð1 1 2 a 3 4 Statements Reasons 5 1. Ð3 @Ð4 1. Given 2. Ð1 @Ð3 2. Vertical Angles Theorem 3. Ð1 @Ð4 3. Substitution 4. a || b 4. Given 5. Ð4 @Ð7 5. If lines are parallel, then alternate interior angles are congruent. 6. Ð1 @Ð7 6. Substitution 7. Ð7 @Ð10 7. Vertical Angles Theorem 8. Ð1 @Ð10 8. Substitution 6 8 7 b 9 10 d c 5. Given: a || b Prove: Ð1 and Ð7 are supplementary. 1 3 b 4 5 6 7 a 8 2 Statements Reasons 1. a || b 1. Given 2. mÐ1 + mÐ4 = 180 2. Definition of Linear Pair/Angle Addition Postulate 3. mÐ4 = mÐ7; Ð4 Ð7 3. If lines are parallel, then alternate interior angles are congruent. 4. mÐ1 + mÐ7 = 180 4. Substitution 5. Ð1 and Ð7 are supplementary 5. Definition of supplementary angles

  4. Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – Page 5 – Answer Key Date: ___________________________ 6. Given: BE bisects ÐDBA; Ð1 @Ð3 Prove: CD // BE Reasons Statements 1. BE bisects ÐDBA 1. Given 2. Ð2 @Ð3 2. Definition of an Angle Bisector 3. Ð1 @Ð3 3. Given 4. Ð2 @Ð1 4. Substitution 5. CD // BE 5. If two lines are cut by a transversal and alternate interior angles are congruent, then the lines are parallel. C B 2 3 1 A D E

  5. Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – page 6 – Answer Key Date: ___________________________ 7. Given: AB // CD; BC // DE Prove: Ð2 @Ð6 Reasons Statements 1. AB // CD 1. Given 2. Ð2 @Ð4 2. If two parallel lines are cut by a transversal, then alternate interior angles are congruent. 3. BC // DE 3. Given 4. Ð4 @Ð6 4. If two parallel lines are cut by a transversal, then alternate interior angles are congruent. 5. Ð2 @Ð6 5. Substitution B D 6 2 4 1 3 5 7 A C E 8. Given: AB // CD; Ð2 @Ð6 Prove: BC // DE Reasons Statements 1. AB // CD 1. Given 2. Ð2 @Ð4 2. If two parallel lines are cut by a transversal, then alternate interior angles are congruent. 3. Ð2 @Ð6 5. Given 4. Ð4 @Ð6 4. Substitution 5. BC // DE 3. If two lines are cut by a transversal and alternate interior angles are congruent, then the lines are parallel. B D 6 2 4 1 3 5 7 A C E

  6. Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – page 7– Answer Key Date: ___________________________ Section VI – Solve each Algebra Connection Problem. 1. 2. w 4x - 5 23y z + 57 x 65° 125° 37° 2y w = 37 x = 143 y = 71.5 z = 86 x = 30 y = 5 3. 4. 30° x + 12 6x 8x + 1 5x y 75° x = 21 y = 75 x = 11 5. 6. A B 4x + 25 4x + 13 5x 4x + 17 83° 80° 6x 6x D C x = 20 Is AB // DC? yes Is AD // BC? no 4x + 25 4x + 13 x = 23

  7. Geometry/Trig 2 Name: __________________________ Unit 3 Review Packet – page 8 – Answer Key Date: ___________________________

More Related